
Efficient Mobility Pattern Stream
Matching on Mobile Devices

Simona-Claudia Florescu1 and Michael Mock1 and Christine Körner1 and Michael May1

Abstract. The increasing amount of mobile phones that are
equipped with localization technology offers a great opportunity for
the collection of mobility data. This data can be used for detecting
mobility patterns. Matching mobility patterns in streams of spatio-
temporal events implies a trade-off between efficiency and pattern
complexity. Existing work deals either with low expressive patterns,
which can be evaluated efficiently, or with very complex patterns
on powerful machines. We propose an approach which solves the
trade-off and is able to match flexible and sufficiently complex pat-
terns while delivering a good performance on a resource-constrained
mobile device. The supported patterns include full regular expres-
sions as well as relative and absolute time constraints. We present
the definition of our pattern language and the implementation and
performance evaluation of the pattern matching on a mobile device,
using a hierarchy of filters which continuously process the GPS input
stream.

1 INTRODUCTION

The analysis of mobility behavior based on GPS-tracks has become
a popular field of research [15, 7, 4, 16, 18]. In the context of the
European LIFT [10] project, we aim at the on-line monitoring of
global non-linear phenomena from massively distributed streams of
data. In the mobility domain such global phenomena are, for exam-
ple, mass events or changes in traffic flows. The basic approach of
LIFT technology for the reduction of communication overhead is to
build local mobility models on each device and to communicate only
significant changes to a central coordinator, which is computing the
global model. This paper presents an approach for building the local
mobility model efficiently on a mobile device.

Mobility patterns such as used in [4] and [7] are an appropriate
way of modeling spatio-temporal mobility behavior. Powerful spe-
cialized database systems such as [16] allow to retrieve patterns from
spatio-temporal data using complex pattern queries, in which spa-
tial and temporal conditions can be freely combined. Providing this
flexibility for pattern definitions for building local mobility models
on a mobile device would surely exceed the computational power
of such devices. Patterns expressed by regular expressions only, but
not supporting queries over travel times (as in [4]) might have a bet-
ter chance of being efficiently implemented on a mobile device. The
same holds for the work of [7], which allows queries over travel times
but supports sequential patterns only. Our approach of building mo-
bility models is based on the notion of visits as being formally intro-
duced in [12, 11]. Patterns are build as regular expression over visits,

1 Fraunhofer Institute for Intelligent Analysis and Information
Systems, Germany, email:simona.florescu@gmail.com, first-
name.lastname@iais.fraunhofer.de

and time constraints are applied to complete patterns. For achiev-
ing an efficient implementation on the mobile device, we spread the
task of pattern matching over a filter hierarchy that is fed with the
stream of GPS input data: Firstly, a VisitEventFilter detects whether
a certain location is being visited and, if so, forwards a visit event to a
PatternFilter, which can handle arbitrary regular expressions (includ-
ing Kleene closure) over visit events. Lastly, a TimeConstraintFilter
is used to check any expression over the travel time for the com-
plete pattern. By this approach, we can use standard deterministic
automatons for implementing matching of regular expressions and
can perform efficient time constraint checking in constant time. The
remainder of this paper is structured as follows: in the next section,
we present our approach, mobility pattern matching over streams
containing the pattern definition language and details of the imple-
mentation of the pattern matching algorithm. Section 3 contains the
performance and scalability evaluation and Section 4 discusses re-
lated work. The last section, conclusions, provides a short summary,
improvement suggestions and future work.

2 MOBILITY PATTERN MATCHING

Figure 1 describes our general approach for building local and global
mobility models. As described in [11], our mobility model is based
on counts of occurrences of events, whereby an event represents the
occurrence of a specific predefined spatio-temporal behavior in the
observed GPS track. The local mobility model represents the behav-
ior of a specific user and is locally computed on the device itself,
whereas the global model is build by aggregating all local models
on a single node (global coordinator). LIFT technology is used to
reduce the amount of communication needed for maintaining the
global model correct over time. The basic approach thereby is to de-
fine a so-called SafeZone, in which the local model can safely vary
without notifying the global coordinator [17]. In this paper, we fo-
cus on the question whether the input for generating the local model
can be computed efficiently on a mobile device, i.e., the gray shaded
part in Figure 1. Being able to compute a model locally is a prerequi-
site for applying LIFT technology for communication reduction. The
local mobility model is computed by processing the stream of GPS
updates as provided by an Android Location Provider through a hier-
archy of filters (see [8] for the details of filter interface definitions).
At the first level, the VisitEventFilter detects whether the device stays
for a pre-defined minimum time in one of the pre-defined locations,
which are stored in the local location database. If so, a visit event
is generated, which will be processed at the next layer in the hier-
archy, the PatternFilter. This Filter takes list of predefined patterns
(regular expressions over visits) as input and matches the incoming
visit events against these patterns. In case of a match, a pattern event

23



is forwarded to the next filter. At the last filter level, the TimeCon-
straintFilter, the time constraints for the matched pattern are vali-
dated. If they are fulfilled, the respective pattern frequency count is
increased. The input for our implementation consists therefore of:
(1) an infinite stream of GPS-sensed location updates, (2) a given set
of interesting locations to be monitored, (3) a set of patterns with the
set of interesting locations as domain, as depicted in the figure below,
Figure 1.

TimeConstraintFilter

VisitEventFilter

PatternFilter

Mobile Device with Android OS

Change notification

LIFT Global 
Coordinator

Global 
Mobility 
Model

LIFT Local Mobility ModelLIFT Local Mobility Model

GPS Update

Android Location ProviderAndroid Location Provider

VisitEvent

PatternEvent

Matched TimePattern

Location
Definition
Database

Pattern & 
TimeConstra
int Definition

Figure 1. Filter hierarchy and data flow of the approach.

2.1 Pattern Matching Language

We propose a pattern language based on regular expressions. We
define the language for the three main levels of our approach: Vis-
itEventFilter, PatternFilter and TimeConstraintFilter.

Firstly, we define a location, of which the input data for the Vis-
itEventFilter consists. A location is defined by an id, a type, a spatial
extend and the minimum stay time at the location. Note that this def-
inition allows for overlapping locations (for example: a location for
a specific attraction inside the location ”Amusement Park”) as well
as for monitoring complete regions by dividing a region in a spa-
tial grid of locations. In our implementation we consider rectangular
spatial shapes, therefore we define the four coordinates of the bound-
ing boxes. The id is a unique identification for the location and the
type of location (e.g. cinema, fast-food, school) is coded for short-
ness purposes with two digits. The minimum stay time defines the
time period that an encounter with a location must last in order to
become a visit.2 A location is defined as:

location := id, type, xmin, xmax, ymin, ymax,minStay (1)

We represent a visit event, generated by the VisitEventFilter with
the following attributes: location identification, location type, entry
and exit time (in milliseconds):

2 Both the bounding box radius and minimum stay time are defined
application-depend, depending on the location type (e.g. for bigger loca-
tions we set the minimum stay time higher) in order to distinguish between
passing by and visiting.

visitEvent := (id, type, entryT ime, exitT ime) (2)

We define a visitExpression as being the concatenation of the id,
type and the stayTime using the within separator ”,”:

visitExpression := concat(id, type, stayT ime, sep = ”, ”)
(3)

The stay time is the difference between the exit and entry time.
Similarly to [4] it is expressed as a sequence of repeated time units t
so that it can be matched by regular expressions. This enables pattern
queries like ”a stay time of at least 5 and at most 20 minutes”. The
duration of a time unit depends on the required accuracy and can be
set to e.g. one minute. An example of a visit expression is: 1,01,tttt
which represents a visit event with location 1, of type 01 (here code
for cinema) and a stay time of 4 time units.

A pattern consists of (1) a regular expression of one or several
visitExpressions and (2) a timeConstraint - containing absolute and
relative constraints:

pattern := (regex(visitExpression+), timeConstraint) (4)

timeConstraint := ([fexit], [opf ], [lentry], [opl], [lc], [rc]) (5)

The regular expression is defined according to the regular
language specified in [14] on the alphabet of visitExpressions
(Definition 3). Several expressions are hereby separated by a
semicolon. In a digital format we represent a pattern in XML
(Extended-Markup-Language). Figure 2 shows an example of a
mobility pattern. The pattern’s XML representation is shown in the
code snippet below Figure 2. The part of the pattern containing the
regular expression is

1,01,t{0,4};@;2,02,t{4,8};

It denotes a visit to location 1 (of type 01) for up to 4 time units
followed by an arbitrary number of visits to unspecified locations
(expressed by @3), followed by a visit to location 2 (of type 02) for
a stay time between 4 and 8 time units.

The time constraint of the pattern definition (Definition 5) is
checked by the TimeConstraintFilter and contains absolute and rel-
ative constraints. The absolute time constraints are: (1) fexit - the
constraint on the first event exit time in milliseconds; (2) opf - the
operator applied to fexit with the following possible values: 0 for
less, 1 for equals, 2 for greater than, - for none; (3) lentry - the con-
straint on the last event entry time in milliseconds and (4) opl - the
operator applied to lentry with the same values as opf . In the ex-
ample given below no absolute time constraints are specified but, for
example, the values: fexit = 1, 000, 000 and op1 = 2 would im-
pose on the first visit event that its exitTime must be greater than
1,000,000. The relative time constraints are: (5) lc - the left con-
straint for the pattern duration in milliseconds and (6) rc - the right
constraint for the whole pattern in milliseconds e.g. lc < lentry −
fexit < rc. For the given example the relative time constraint is:
0 < visitEventid=2.entryT ime− visitEventid=1.exitT ime <
7, 200, 000.

Below, the XML for the pattern depicted in Figure 2 is shown
containing the pattern id, the regular expression of the sequence of
visits as well as the time constraints.
3 In [14] the JAVA library automaton specifies a regular language implemen-

tation where the symbol ’@’ represents any sequence of characters

24



1
2

<2h

Figure 2. Mobility pattern example: a visit to location 1 followed by an
arbitrary number of visits to intermediate locations followed by a visit to

location 2 with a maximum time period of 2 hours (7,200,000 milliseconds)
between the first and last visit

<?xml version=’1.0’?>
<PatternList>

<Pattern>
<id>1</id>
<regex>1,01,t{0,4};@;2,02,t{4,8};</regex>
<tc>

<f_exit>-</f_exit>
<op_f>-</op_f>
<l_entry>-</l_entry>
<op_l>-</op_l>
<lc>0</lc>
<rc>7200000</rc>

</tc>
</Pattern>

</PatternList>

2.2 Pattern Matching Algorithm
Our approach consists of several filters implemented in an embed-
ded Android application: a VisitEventFilter, a PatternFilter and the
TimeConstraintFilter which return a pattern distribution from a GPS
stream input, see Figure 1 and Section 1.

The first filter, the VisitEventFilter, receives as input the stream
of GPS coordinates and a set of locations stored in a local SQLite
database and generates visit events. In order to do so it checks
whether there is a spatial match between the coordinates and
the input of locations, described in Section 2.1 Pattern Matching
Language. The input database contains the tables, which are joined
by their id:

Locations1(id, xmin, ymin, ymax, ymax)
Locations2(id, latitude, longitude, name, type,min stay)

The main steps of the visit filtering approach are: firstly, the
database is queried to retrieve the ids of the locations in which the
current position is in. As we are restricting the current implementa-
tion to rectangular locations, this can be achieved by a first query
such as:

SELECT Id FROM Locations1 WHERE x ≥ xmin and
x ≤ xmax and y ≥ ymin and y ≤ ymax

followed by another query on the Locations2 table for retrieving
the rest of the location information (Definition 1).

Secondly, we are maintaining a list of entered locations. Whenever
we detect that the current GPS point is no longer in a specific one of
those entered locations, we check whether we have been staying at
least a time of minStay within that location and, if so, generate a visit
event for that location. In any case, the location is removed from the
list of entered locations. The complete algorithm can be found in [6].

In the PatternFilter we model the patterns using deterministic fi-
nite automata [9]. We instantiate an automaton for each of the parsed
patterns from the XML input. In the PatternMatcher class we create
and model automata using the JAVA library automaton [14] to match
the regular expressions specified in the first part of Definition 4.

The class structure of the pattern matching algorithm consists of:

• A PatternFilter class, which instantiates in its constructor a list of
PatternMatcher objects by calling the PatternReader class. The
PatternFilter maintains the list of all patterns. It receives visit
events in its update function and generates and forwards pattern
events to the next filter, the TimeConstraintFilter.

• A PatternMatcher class where an automaton is modeled. In the
constructor the variables needed for saving the automaton data
structure are initialized as well as a pattern event object for storing
the information of the matched pattern.

• The PatternReader reads and converts a pattern from XML to an
object of type PatternMatcher.

• The filter class TimeConstraintFilter checks if the time constraints
are fulfilled for a received pattern event. In its constructor, it reads
and parses the time constraints for each pattern into a TimeCon-
straint object.

In the PatternMatcher constructor, provided in the pseudocode of
Class 1, the field automaton represents an object of type Ru-
nAutomaton, defined in the JAVA library automaton. The fields
for defining the state of the automaton are actualState and
isInitial. The patternEvent is an object of type Event
which stores the properties of the generated pattern event for each
match. The logic of the PatternMatcher is contained in the func-
tions processVisit and reset shown in the pseudocode of Class 1.
The processVisit function receives a visitEvent as a pa-
rameter, generated by the previous filter (the VisitEventFilter), and
returns a boolean value of true if the visit event completes the
matching of a given pattern and false if not. The processVisit func-
tion generates the visitExpression which has the structure
given in Definition 3. The stepThrough function runs through
the automaton with each character from the visitExpression
as transition and returns the step obtained after the run. A value
for step of -1 means that the matching failed. Any other value
means that the automaton advances in another state, changing vari-
able actualState. In this case and if the isInitialwas true,
the patternEvent stores the exitTime of the visit event. If the
visitExpression could not be matched, the function reset is
called. There, the patternEvent attributes are set to null and the
state of the automaton is set to initial. Another check in the function
is whether the automaton has reached the final state. In this case
the patternEvent stores the entryTime of the visit event since
this is its last visit event matched in the pattern.

The pseudocode of the PatternFilter is shown in Class 2. In the
constructor a list of PatternMatcher objects is generated, one for
each given pattern. Further, the PatternReader class, which reads and
parses the XML input patterns, is called. For each pattern string the
PatternReader instantiates a PatternMatcher by calling its construc-
tor as shown in Class 1. In the update function of the PatternFilter,
for each new visit event update, all the existing PatternMatcher ob-
jects from the patternMatcherList are traversed and called to
execute the processVisit function, shown in Class 1. If the re-
turned value from processVisit is true, then the matched pattern
event, patternEvent is forwarded to the next filter.

Finally, in the TimeConstraintFilter the matched pattern time con-
straints are checked, if any are provided. The time constraints are de-

25



Class 1 PATTERNMATCHER
Fields: automaton - deterministic automaton for the pattern

actualState - the actual state of the automaton
patternEvent - an Event object for a matched pattern
isInitial - boolean value for initial state of automaton

Constructor: PatternMatcher(id, regex)
id - pattern id
regex - regular expression

1: this.patternEvent.id← id
2: this.automaton← new RunAutomaton(regex)

// using DFA java library from [14]
3: this.reset()

reset()
4: this.patternEvent.entryT ime← null
5: this.patternEvent.exitT ime← null
6: this.actualState← (this.automaton.getInitialState())
7: this.isInitial← true

boolean processVisit(visitEvent)
8: visitExpression← makeV isitExpression(visitEvent)
9: step← automaton.stepThrough(actualState, visitExpression)

// stepThrough returns the state reached by inputting all characters of the visitEx-
pression to the automaton starting with actualState

10: if step 6= −1 then // step is -1 for a mismatch
11: if this.automaton.isInitial then
12: this.patternEvent.entryT ime← visitEvent.exitT ime
13: this.isInitial← false
14: end if
15: actualState← step
16: else // the visitExpression could not be entirely matched
17: this.reset()
18: end if

// check whether the automaton has reached the end state
19: if automaton.isF inal() then
20: this.patternEvent.exitT ime← visitEvent.entryT ime
21: this.reset()

// automaton is set on the initial state and all variables are reinitialized
22: return true
23: else
24: return false
25: end if

Class 2 PATTERNFILTER
Fields: patternMatcherList - a list of objects of type

PatternMatcher

Constructor: PatternFilter()

1: reader = newPatternReader()
2: this.patternMatcherList← reader.parseAutomaton(input file)

// instantiate list of PatternMatcher

update(visitEvent)
3: for PatternMatcher ∈ patternMatcherList do
4: if PatternMatcher.processV isit(visitEvent) then
5: forward(PatternMatcher.patternEvent)
6: end if
7: end for

fined in Section 2.1 (Pattern Matching Language) and relate to the
first and last event in the matched pattern, respectively. The Time-
ConstraintFilter constructor instantiates a TimeConstraint object for
each pattern. When invoked with a pattern id of the incoming pattern
event, it checks the existing time constraints for the respective pattern
id. The generated event at this level is a matched time pattern.

3 PERFORMANCE EVALUATION
Our performance evaluation for checking the potential of the appli-
cation in practice is based on synthetic data. The tests were run on
a Samsung Galaxy SII GT-I9100, operating Android Gingerbread,
version 2.3.3. The GPS stream data consists of synthetically gener-
ated coordinates. In addition, we retrieved 800,000 points of interest
(POI) from the geo-service OSM [13] for the location set. The POIs
were obtained for Germany and are of 15 different types. The gener-
ated patterns are formulated similarly to the example pattern in Sec-
tion 2.1 and Figure 2, i.e. they specify the first and last location and
allow an arbitrary number of visit events in between. In addition, all

patterns possess time constraints. Our artificial GPS data is generated
such that 40% of all points lead to a match with the location database
and generate a visitEvent. For performance evaluations of the Pat-
ternFilter 2,6% of the input visitEvents complete a pattern match.
Finally, each pattern match is checked in the TimeConstraintFilter.

#Locations 10 100 1K 10K 100K 500K 800K
Run-time (ms) 0.72 0.69 0.79 0.82 0.75 0.73 0.75

Stddev run 0.90 0.71 0.71 0.81 0.78 0.66 0.79
DBQuery (ms) 0.35 0.33 0.39 0.42 0.35 0.37 0.36

Stddev DBQuery 0.60 0.46 0.54 0.67 0.38 0.54 0.55

Table 1. The run-time values for the VisitEventFilter.

#Patterns 100 1K 10K 100K 300K
Run-time (ms) 1.2 17.1 157.0 1498.4 4397.3

Stddev. 0.08 6.5 7.1 24.0 129.6
Start-up (ms) 266.3 275.1 239.2 499.9 1341.8

Stddev. 201.6 225.1 48.2 9.3 15.3
Heap size (MB) 2.67 2.68 2.75 2.76 2.76
Memory (MB) 5 10 10 12 24

Table 2. The run-time values for the PatternFilter

Firstly, we measured the run-time for the VisitEventFilter. We var-
ied the size of the location set from 10 to 800,000. Table 1 shows the
obtained performance results. We distinguish between the database
query (DBQuery) and the entire run-time (Run-time) measured be-
fore forwarding a visit event, therefore the DBQuery run-time is in-
cluded in the run-time value. Table 1 shows that the run-time of the
VisitEventFilter is nearly constant when varying the number of loca-
tions in the underlying database. We ascribe this behavior to caching
effects in the SQLite database, taking into account that the database
is opened only once and that all queries are read-only. Ongoing ex-
periments and code analysis showed that the time needed for the
database part in the VisitEventFilter depends on the number of over-
lapping locations in which a given GPS point resides. In the syn-
thetic GPS tracks used in the evaluation, the GPS points match to
one (non-overlapping) location only. All visit events are detected in
a time well below one second, which is the time difference between
two GPS location updates in worst case. In addition, the number of
monitored locations will be geographically limited in practice. For
example, when restricting the collected POI (points-of-interest) to
the city of Cologne, we obtained a set of about 20,000 locations.

Secondly, we evaluated the run-time of the PatternFilter under
an increasing number of checked patterns with an average match-
ing percentage of 2,6%. The results are shown in Table 2. The table
also contains the reading and parsing time for all patterns (Start-up),
which takes place in the PatternFilter constructor. The run-time for
the pattern matching increases linearly with the number of tested pat-
terns (Run-time), which corresponds to the main loop executed in the
PatternFilter.update method. Furthermore, for each of the instances
of the PatternFilter we show the heap size and the allocated mem-
ory. The values were captured for about three runs as delivered by the
Android debugger class. The results for the heap size are relatively
constant and show for the memory allocations fair results, since the
high number of 300,000 patterns use about 24MB out of 64MB.

The TimeConstraintFilter has a constant run-time, since it only
retrieves the time constraints for the respective pattern id from a
HashMap, and the time constraint validation is trivial. The run-time

26



for the TimeConstraintFilter is approximately 10 milliseconds per
pattern event.

4 RELATED WORK
Table 3 gives an overview on related work in the field of spatio-
temporal mobility analysis. The criteria on which we compare re-
lated work are: (1) stay time (Stay) - patterns with conditions on
minimum and maximum stay time, (2) travel time (TT) - the time
span between two locations in the pattern, (3) the time constraints
(TC) - time constraints on the full pattern, i.e. on first and last loca-
tion in the pattern, (4) full regular expressions (FullRE) - supporting
all the expression options from regular expressions i.e. Kleene clo-
sure (+,*), negation, conjunction, disjunction, and (5) predicates -
additional complex conditions on the pattern (e.g. an attribute should
have an incrementing value) and (6) Stream - whether the approach
is applied on-line (on stream data) or later, off-line. Although our
matched patterns are not the most complex, our approach is the first
one successfully tested on a resource-constrained device.

Approach Stay TT TC FullRE Pred. Stream
T-patterns [7] - X - - - -

Mob. patterns [4] X - - X - -
SASE [18] X - X X X X
SASE+ [1] X - - X X X
Cayuga [2] - - X X X X
STPQ [16] X X X X X -

Our Approach X - X X - X

Table 3. Comparison with related work

The function addProximityAlert provided by the Android
LocationManager [3] performs a similar task as our VisitEvent-
Filter. Comparative experiments between both classes showed that
the Android function can register proximity alerts for only less than
30,000 locations, compared to our approach, which has been tested
for up to 800,000 locations.

5 CONCLUSION
In this paper we have shown that the detection of state-of-the art com-
plex mobility patterns can be implemented on a resource-constrained
environment such as a mobile device. Our experiments show that the
pattern matching can process the matching of 800,000 locations and
up to 10,000 complex patterns in much less than one second. For
handling more locations or more patterns, measures can be taken
to reduce the number of GPS position updates by configuring the
Android Location Provider appropriately or by adding intermediate
GPS smoothing filters. For example, for a frequency of 5 seconds per
position update request, our application can efficiently scale up to at
least 800,000 locations and over 300,000 complex patterns.

We consider a few improvements for future work. We have ini-
tial measurements of battery consumption which are promising, but
need to be investigated in detail. The VisitEventFilter performs very
fast (see Table 1). This results from using rectangular locations only,
which allows to search for locations with the simple query shown in
Section 2.2 efficiently. Specific applications may, however, require
more complex location geometries. For the PatternFilter, run-times
mainly depend of the loop executed over the set of patterns. Here, we
can explore parallelism of the underlying multi-core hardware and

we can apply optimizations from the area of complex event process-
ing, see [5]. Furthermore, the handling of travel times (in addition
to pattern time constraints) will be investigated by the repeated hier-
archical composition of our PatternFilter and TimeConstraint filters.
Lastly, we will evaluate the performance of our approach on real-
world data collected from 70 users in the city of Cologne, Germany.

ACKNOWLEDGEMENTS
The research leading to these results has received funding from the
European Union’s Seventh Framework Programme (FP7/2007-2013)
under grant agreement no. 255951 (LIFT Project).

REFERENCES
[1] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman, ‘Efficient pat-

tern matching over event streams’, in Proc. of the 2008 ACM SIGMOD
international conference on Management of data, SIGMOD ’08, pp.
147–160, New York, NY, USA, (2008). ACM.

[2] A. Demers, J. Gehrke, B. Panda, M. Riedewald, V. Sharma, and
W. White, ‘Cayuga : A General Purpose Event Monitoring System’,
Publish, 412–422, (2007).

[3] Android developer website. www.developer.android.com, Last ac-
cessed: April 2012.

[4] C. du Mouza and P. Rigaux, ‘Mobility patterns’, GeoInformatica, 9(4),
297–319, (2005).

[5] O. Etzion and P. Niblett, Event Processing in Action, Manning Publica-
tions Company, 2010.

[6] S.-C. Florescu, ‘Efficient retrieval of mobility patterns on mobile de-
vices’, RWTH Aachen, Germany, (August 2012). To be submitted.

[7] F. Giannotti, M. Nanni, F. Pinelli, and D. Pedreschi, ‘Trajectory pattern
mining’, in Proc. of the 13th ACM SIGKDD international conference
on Knowledge discovery and data mining, KDD ’07, pp. 330–339, New
York, NY, USA, (2007). ACM.

[8] M. Hoffmann, ‘A simulation environment for distributed stream analy-
sis’, Master Thesis, Univ. of Appl. Sc. Bonn-Rhein-Sieg, (2011).

[9] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Lan-
guages, and Computation, volume 2, Addison-Wesley, 1979.

[10] LIFT (Using Local Inference in Massively Distributed Systems).
http://www.lift-eu.org.

[11] C. Körner, Modeling Visit Potential of Geographic Locations Based on
Mobility Data, Phd thesis, University of Bonn, 2012.

[12] C. Körner, D. Hecker, M. May, and S. Wrobel, ‘Visit potential: A com-
mon vocabulary for the analysis of entity-location interactions in mo-
bility applications’, in Geospatial Thinking, Lecture Notes in Geoinfor-
mation and Cartography, 79–95, Springer, (2010).

[13] Open Street Maps. www.osm.org, Last accessed: December 2011.
[14] A. Møller. dk.brics.automaton – finite-state automata and regular ex-

pressions for Java, 2010. http://www.brics.dk/automaton/.
[15] D. J. Patterson, L. Liao, K. Gajos, M. Collier, N. Livic, K. Olson,

S. Wang, D. Fox, and H. Kautz, ‘Opportunity knocks: a system to pro-
vide cognitive assistance with transportation services’, in Ubicomp, pp.
433–450, (2004).

[16] M. A. Sakr and R. Hartmut Güting, ‘Spatiotemporal pattern queries’,
GeoInformatica, 15(3), 497–540, (2011).

[17] I. Sharfman, A. Schuster, and D. Keren, ‘A geometric approach to mon-
itoring threshold functions over distributed data streams’, in Proc. of the
2006 ACM SIGMOD international conference on Management of data,
SIGMOD ’06, pp. 301–312, New York, NY, USA, (2006). ACM.

[18] E. Wu, ‘High-performance complex event processing over streams’, in
Proc. of the 2006 ACM SIGMOD international conference on Manage-
ment of data, SIGMOD ’06, pp. 407–418, (2006).

27


