ABSTRACT

THE INCOME APPROACH FOR
CONCEPTUAL MODELLING AND PROTOTYPING
OF INFORMATION SYSTEMS

G. Lausen ®
T. Németh **)
A. Oberweis *)

F. Schonthaler **)

W. Stucky **

*) Universitiit Mannheim **) Universitit Karlsruhe (TH)
Fakultit fiir Mathematik und Institut fiir Angewandte Informatik
Informatik | und Formale Beschreibungsverfahren
D-6800 Mannheim D-7500 Karlsruhe
West-Germany West-Germany

This paper surveys the main features of INCOME, which is an approach for conceptual modelling
of information systems. INCOME supports the specification and prototyping of all static and
dynamic system aspects which are regarded to be relevant for the design. Petri nets with different
interpretations are used as uniform specification framework for object structures and system

behaviour.

KEYWORDS

Conceptual Modelling, Prototyping, Predicate/Transition Net, Semantic Hierarchy Object Model.

I INTRODUCTION

Conceptual modelling is the activity of formally specifying all relevant aspects of an application system in
such a way that implementation aspects are not yet regarded. In a conceptual schema both static and
dynamic aspects should be considered (cf. [ISO82]). The conceptual modelling step usually is placed
between the requirements analysis step and the system design step.

INCOME (Interactive Net-based COnceptual Modelling Environment) is a computer-supported approach
for conceptual modelling. Its characteristic feature is the uniform framework based on Net Theory (cf.
[BRR87]) to capture all relevant static and dynamic aspects of the future application system. Moreover,
to allow a validation of the information content and the application procedures as early as possible
INCOME provides a prototyping facility that can be used at any stage of the design process.

Input for the conceptual modelling with INCOME is a functional requirements specification given as a
hierarchy of object flow diagrams similar to SADT [Ros77] or ISAC [Lun82). Additionally a glossary is
needed which is an informal textual description of functions and object flows of the future system. From
the functional requirements specification the conceptual object structure schema is derived. We use a
semantic hierarchy object model similar to SHM+ [BrR84] and THM [Sch84]. The object flow diagrams
of the hierarchy are interpreted as Petri Nets. If necessary, these local behaviour nets are modified so that
the formal transition rule holds. This formal transition rule makes the modelling of system dynamics
possible. The local behaviour nets are combined to the global behaviour net which expresses system
dynamics on the user level. The transaction schema contains partial nets of the global behaviour net
together with arc inscriptions to describe what object types are involved in a given transaction and how
they are used.

In [OSV82, OST83, BrR84, KiM84, AnL85, SoK86, StH86, HNS87] similar comprehensive
methodologies for conceptual modelling are described where static aspects of application systems as well
as dynamic aspects are considered. However, it is not clear how the formal system specification can be
derived in these approaches from the usually informal requirements description given by the system
enduser. Based on these approaches, communication between endusers and designers would be rather
troublesome because different description formalisms and graphical representation methods are used for
the static and dynamic partial schema.

In INCOME, on the other hand, Petri Nets are used for the uniform specification of both static object
structures and dynamic system behaviour. INCOME provides concepts for a stepwise derivation of
formal specifications from informal descriptions. Using concepts of refinement for nets allows the
designer to consider static and dynamic system aspects at more or less detailed levels of abstraction.
Automatic analysis tools allow the checking of a proposed conceptual schema for syntactic errors
whereas the prototyping tool helps to detect design errors like incompleteness, contradiction, ambiguity,
and to improve the design in cooperation with the enduser.

The basic concepts of INCOME have been first proposed in [Lau86, Lau88]. The prototyping tool has
been described in [SOL87, Sch89]. Other special aspects of conceptual modelling have been considered
elsewhere: The representation of temporal aspects in [ObL88], and the specification of integrity
constraints in [Obe88]. Earlier overviews of the INCOME approach can be found in [OSL86, NSS88].
In this paper the INCOME approach is examined in an extensive case study on an inventory control and
purchasing system. However, due to space limitations we must refer to [LNO88] for most parts of the
case study.

This paper is organized as follows: The functional requirements specification with object flow diagrams
is described in Section II. The procedure of object structure modelling is outlined in Section III. Section
IV briefly explains how system behaviour is specified in terms of PROLOG-inscribed

2

Predicate/Transition Nets. The INCOME prototyping approach is described in Section V. The prototype
implementation of a software development environment based on the INCOME approach is outlined in
Section VI. Section VII contains a short summary of the paper and an outlook on future work.

II FUNCTIONAL REQUIREMENTS SPECIFICATION

‘The starting point for conceptual modelling with INCOME is a functional requirements specification
given as a hierarchy of object flow diagrams. Object flow diagrams are an easily understandable means
for the semi-formal description of functions that an application system must fulfil. Only two graphical
:symbols are needed: rectangles for the representation of functions and arrows between rectangles to
represent object flows between the respective functions. Hierarchies of object flow diagrams are derived
by successive refinement of object flow diagrams where refining an object flow diagram means replacing
each single function together with its input and output object flows by a complete object flow diagram.
The top level function of a hierarchy represents the whole system activity whereas the bottom level
functions, called final functions, represent atomic user operations. Figure 1 shows an example of a
refining object flow diagram.

I B £
stock information handling | stock data
stock data newtypes [?
of stoc!
= - - = = e - = -
- e - ~
- -~ = - -
o = -

1.1 handling new types of stock

1
stock data |displa

list of stock

2 Navailable stocH—:
|;:_ma i l] item types

1 stock item information keep stoc ok daia

stock data llem types 1
2 up to date
2 stock data llnslp ?y listof

sltsoc?: items stock itoms
list of stock item types :

o | stock data }“Zenl‘:::;;ck stock data 1
1 stock item information to date

Figure 1: Refining Object Flow Diagram

The top-down approach supported by INCOME enables a trained application system enduser to specify
his requirements himself. However such a semi-formal system description is not an appropriate basis for
a later system implementation because contradictions, inconsistencies, incompleteness, lack of exactness,
and ambiguity cannot be excluded by automatic analysis. We reject to introduce further semantics in
object flow diagrams by using additional graphical symbols as done for example in [War86] because for

3

practical applications such extended flow diagrams become too complicated and are therefore hardly
understandable for system endusers. Instead we prefer an approach where we proceed in a stepwise
manner from semi-formal object flow diagrams and informal textual descriptions within the glossary to
the formal specification means of Petri Nets. Petri Nets and the underlying Net Theory [BRR87] are
based on mathematical formalisms and allow automatic analyses as well as prototyping-based validation
of the system specification.

III MODELLING OF OBJECT STRUCTURES
ITII.1 SEMANTIC HIERARCHY OBJECT MODEL

The static part of the conceptual schema - the object structure schema - contains descriptions of objects
and relationships of a real or hypothetical world. For the modelling of object structures we use nets with
a special interpretation, so-called object structure nets. The underlying concepts of classification,
aggregation, generalization, and grouping are well known to be fundamental for most semantic data
models (e.g. [SmS77, BrR84]).

Classification

Classification is the essential concept for object structure modelling. It is used to describe objects in
terms of object classes. Object classes are assigned unique names (types). The objects of a class are
called instances - each of them can be uniquely identified within the class.

Generalization

The concept of generalization is comparable to that of classification where generalization is used to collect
object types (subtypes) with similar properties. All properties which are common for the subtypes are
assigned to the supertype . In Figure 2 the object type supplier information is the generic supertype of the
subtypes address information and delivery information.

Aggregation
Whereas generalization allows the insertion of abstraction levels, aggregation supports the structuring of
object types. Aggregation is used to define component relationships between object types. A set of object
types is assigned to the aggregated object type as its components. In the example given in Figure 2 the
aggregated type stock item consists of the component types item code, item name, maximum level and
re-order level.

Grouping
Grouping is used to define object types whose instances are sets of objects of another lower level type.
In Figure 2 an object of the type delivery information is a set of objects of the type stock item.

Inheritance

An essential feature of the object model is the concept of property inheritance (cf. [BrR84]). The
inheritance direction is given by the direction of the arcs in the graphical representation. In this paper
only domain inheritance is considered. The domain of an object type may be either elementary
(CARDINAL, INTEGER, REAL, STRING, ...) or composed of inherited domains.

Connect Operator

Modelling of object structures is based on a connect operator which is used for the formal connection of
two object structure nets. The resulting net is computed as the union of the underlying sets of object type
relationships.

supplier information

v
o

address information delivery information

stock item

§ T 1 5

item code item name maximum re-order
level level

Figure 2: Example of an Object Structure Net

II1.2 LOCAL STRUCTURES

Object structure modelling starts with the interpretation of object flows of the object flow diagram
hierarchy as object types. This interpretation cannot be fully automatized because the naming of object
flows in the functional requirements specification depends on the context. Renaming and insertion of
object types have to be done interactively. The resulting set of object types is a framework for further
object structure modelling.

In a second step local object flow relationships such as predecessor-/successor- and refinement-
relationships are mapped into the object model. The formal mappings reflect the results of several case
studies carried out in different application areas (cf. [NSS88]).

14 * |
ordering ey
e 9@ | soelwhen purchase order K
required information
o “ purchase order
o ~ . information
2 :
Tl TN
" ~

1.4 ordering stock when required

&
4 4

purchase orders/date purchase order/number

3 purchase orders/date y2

e e o | display
purchase purchase ordcr/numbcr‘}
orders

2

Figure 3: Local Structure for a Further Refined Object Flow

"Modelling of local structures is done with respect to the type of the underlying object flow. Local
structures relate those object flows which are further refined in the object flow diagram hierarchy to their
detailing object flows. Figure 3 shows an example where the object flow purchase order information is
further detailed by the flows purchase orders/date and purchase order/number. The relationship is
mapped into a generalization with supertype purchase order information and subtypes purchase
orders/date, purchase order/number.

Local structures referring to output object flows of functions which are not further refined (final
functions) are derived from predecessor- and successor-relationships. Output object flows are related to
input flows and other output flows of the corresponding function. Figure 4 shows an example where the
output flow stock data of function keep stock items up to date is related to the input flows list of stock
items, list of stock item types, stock data, and stock item information. Note that in this example
additional information was inserted into the final local structure.

list of stock items

list of stock item types
stock data

stock item information

stock data

[
F

keep stock items
up to date

L~

stock item
item types 5‘0“]: data infonzation stock items
% o % %
stock item m.';tock item

Figure 4: Local Structure for an Output Flow of a Final Function

Most part of the modelling process is interactive depending on the depth of refinement realized in the
hierarchy. Formal mapping of object flow relationships usually only leads to draft proposals because of
the lack of semantic information in the diagram hierarchy. Hence tool support covers also a powerful
graphical editor. The editor supports different display techniques to enable the handling of complex
object structure nets.

An important feature of the editor is the analysis component which is used to support the semantic
correctness of the object structure nets. A specific situation to avoid is the occurrence of isolated partial
nets which may especially occur when editing large structures. Therefore object structure nets must be
weakly connected. Isolation often results from removing a supertype and the corresponding
generalization relationship from the object structure net. To ensure that an object structure net is weakly
connected, appropriate algorithms have to be applied which are well known from the relevant graph
theoretic literature.

Another fundamental presumption for the existence of a correct object structure net is the absence of
cycles within the net. A cycle is given by a sequence of object types which are connected by means of a
directed path with respect to the arcs of the object type relationships. This condition is essential for the
semantic correctness because the domains of object types within a cycle cannot be determined. Cycles
within structures are detected by automatic analyses.

It is a general principle of the INCOME tool support that proving the correctness of specifications is not
rigorously enforced by a certain design procedure. Therefore temporary incorrectness is permitted. The
designer explicitly defines the moment when correctness of the object structure net is demanded. This
decision results in an activation of the respective analyses.

II1.3 SCHEMA PARTS

Predecessor- and successor-relationships on a higher hierarchy level are the subject of the third step of
object structure modelling. Further refined output object flows are related to input flows of the
corresponding functions. Object structure nets resulting from this step are called schema parts.

An assumption of schema part modelling for a certain object flow O is that all schema parts and local
structures required for the object flows of the lower level diagram are present. Depending on the strategy
mentioned below, these local structures and schema parts are successively connected with the local
structure of object flow O. The connection is done by application of the operator described in Section
III.1. Because in general most of the local semantics necessary for the definition of object types is
introduced in the local structuring step, most steps of schema part modelling can be automatized.

The strategy for schema part modelling of object flow O is as follows:

(1) The set of object flows detailing the higher level object flow O is determined.

(2) For each of the object flows of step (1) paths are computed backwards through the diagram with
respect to predecessor- and successor-relationships.

(3) All schema parts and local structures related to object flows contained in any of the paths computed
in step (2) are connected successively to the local structure of the object flow O.

Schema parts constructed in this way may now be used for schema part modelling of object flows on a
higher hierarchy level.

The procedure described in the previous sections results in one schema part for each output flow of the
top level function. In order to achieve one global object structure schema, the next step is to integrate
these schema parts in one common schema. This schema has to be augmented by those local structures
and schema parts which have not yet been considered in the schema.

Schema integration is done with respect to the formal connect operator. Moreover, the design is
supported by additional facilities already described in [NaG82].

IV MODELLING OF SYSTEM BEHAVIOUR

The behaviour schema formally describes system behaviour. System behaviour is considered on two
different levels: on the user and the database level. Usually the system enduser does not directly apply
atomic database operations (like delete, update, insert), but instead applies user operations, so-called
transactions which are composed of atomic database operations.

In the first step of behaviour modelling, the object flow diagrams of the functional requirements
specification are interpreted as local behaviour nets. The resulting nets are modified and sometimes
further refined to achieve the validity of the formal transition rule for the bottom level nets. In a next step
the local behaviour nets are connected to a global behaviour net which represents all relevant user
operations and the object flows between them.

The elementary user operations are further refined by so-called transaction nets which are given as
PROLOG-inscribed Predicate/Transition Nets [NiV86].

IV.1 LOCAL BEHAVIOUR NETS

The object flow diagrams of the functional requirements specification serve as a first overview of the
functions of the future application system. They are not a suitable means for a complete and formal
specification of system dynamics.

Petri Nets, on the other hand, are a widely accepted and well suitable means for a formal description of
such aspects. They allow the representation of concurrent, alternative, and sequential processing of
transactions. Marking of places with tokens and the definition of the formal transition rule make the
description of system dynamics possible: Objects that move through a system from activity to activity are
represented in Petri Nets as tokens that move between places.

In the first step of behaviour modelling, the object flow diagrams are interpreted as Petri Nets: the
functions are interpreted as transitions, the object flows are interpreted as places together with outgoing
or ingoing arcs of the corresponding transitions. Figure 5 shows the Petri Net which is derived from the
object flow diagram /.1 / Handling New Types of Stock in Figure 1.

display available
stock item types

11

list of
stock item types

3 keep stock item
s?;fl:)mlg;‘pc t ps up to date
L1z
display list of list of
/ MT stock items
L3 (3
stock data

O | t1e

stock item keep stock items
information up to date

Figure 5: Interpretation of Object Flow Diagram 7./ as a Petri Net

The result is a hierarchy of nets where the formal transition rule usually does not yet hold. The INCOME
method requires a net hierarchy where the bottom level nets represent system behaviour with respect to
the transition rule. For this, first the bottom level nets are modified and if needed further refined. In a
bottom-up procedure the higher level nets must be adapted to the modified lower level nets. Usually this
adaptation results in a modified object flow diagram hierarchy.

The question whether a behaviour net represents correct system behaviour and which modifications are
necessary can only be decided interactively. This process is supported by information about the object
structures corresponding to the places.

INCOME supports reachability analysis of local behaviour nets, for further information see [OSS87].
Furthermore, generation of a reachability tree makes detection of deadlocks possible.

8

IV.2 GLOBAL BEHAVIOUR NET

Most part of the construction of a global behaviour net can be automatized. The construction is done by
connecting the local behaviour nets in a top-down process.

The algorithm works as follows (a more detailed description is given in [Lau86]): Surroundings in a net
(transitions together with the corresponding input and output places and arcs) are replaced by their
refinement until all nets of the hierarchy are considered. The connection algorithm preserves the
behaviour of the global net with respect to the intended behaviour of the local nets. Replacing requires to
consider places which share the surroundings of the refined transitions. If the refinements of those places
in different nets are equal, the connection is trivial.

The other cases are non-trivial. It must be distinguished between two cases:

Case 1: The object type corresponding to the higher level place and the object type of the lower level
places are interrelated by a component relationship. This corresponds to an aggregation
structure.

Case 2: The object type of the higher level place and the object types of the lower level places are
interrelated by a subset relationship. This corresponds to a generalization structure.

Integration of these object modelling concepts with Petri Nets leads to the following net interpretations:

Aggregation: One token of the higher level place corresponds to an assignment of one token to each
lower level place.

Generalization: One token of the higher level place corresponds to an assignment of one token to exactly
one lower level place.

This object modelling oriented view on pre-images of places now can be used for the derivation of the

global behaviour net. First a local behaviour net is transformed to an augmented local behaviour net as

follows:

(1) Each in-set of a place, which contains more than one place, is replaced by either a decomposition or
a specialization net.

(2) Each out-set of a place, which contains more than one place, is replaced by either a composition or a
generalization net.

The connection is then done by replacing the surroundings by the corresponding augmented local
behaviour nets. Figure 6 illustrates an example of the case study where the connection is done by means
of a generalization net.

IV.3 TRANSACTION NETS

In the global behaviour net system behaviour is only considered on the user level, i.e. on transaction
level. The formal Petri Net transition rule allows the representation of pre- and post-conditions of
transactions in a way such that each input place must be marked with at least one token and the capacity
of the output places must not be exceeded. However, the tokens flowing through the behaviour net are
anonymous objects which are not distinguishable from each other if they are in the same place. Hence it
is not possible to specify pre-conditions with respect to concrete instances of objects. Moreover, there is
no possibility to specify how the output tokens are derived from the input tokens.

update

stock replenishment

data
) it |)O :I display
) stock _ : stock changes

replenishment stock
update data change 34 e e e
stock withdrawal

data

. t322 |(
withdrawal

data

(a) Connection of Local Behaviour Nets

stock change
data

v

! |

o o
stock stock
withdrawal replenishment
data data

(b) Part of the Object Structure Schema

Figure 6: Connection of Local Behaviour Nets using a Generalization Net

The specification of this information is done in the transaction modelling step. The surrounding of each
final transition is further refined by representing it in terms of a PROLOG-inscribed Predicate/Transition
Net. To the arcs formal sums of variables are assigned where each variable is associated with an object
type of the object structure schema. To the places object types are assigned where the object types of the
corresponding arcs are equal to that or are connected with it as the subtype of a respective generalization.
The transitions are inscribed with PROLOG clauses.

Figure 7 shows an example of a transaction net derived from the surrounding of transition 112 / Keep
Stock Item Types Up to Date. The transition inscription specifies how, depending on certain rules,
information about an object type is updated or inserted in the stock data.

10

t12 / Keep Stock Item Types Up to Date

As=stock_item_type_information(

stock data

O‘uJ i L4 stock_item_type(E,F,G),_), oo
=stock_data(H), s
((member(stock_item_type(E,_,_),H), D stock item types

stock item type remove(stock_item_type(E,_,),H,I),
information insert(stock_item_type(E,F,G),L)));
A (not member(stock_item_type(E,_,),H),

insert(stock_item_t ,F,G),H.)))),
C=slocl(c_dala'(.l). TP -

Figure 7: Transaction Net Keep Stock Item Types Up to Date.

1V.4 SPECIFICATION OF INTEGRITY CONSTRAINTS

The specification of integrity constraints is an important step during conceptual modelling which
concerns both static and dynamic aspects. Static integrity constraints restrict the set of system states
whereas dynamic integrity constraints restrict the set of state transitions.

Static integrity constraints must be modeled for each transaction net because transactions change system
states and possibly violate integrity. Following the proposals of [HeR86, Vos87] we model static
integrity constraints by facts which are transitions that are postulated to be never enabled. Facts represent
(negative) assertions about admissible system states because they restrict the set of possible states to such
states where no fact is enabled. The facts are inscribed with PROLOG clauses that represent violations of
the integrity constraints. More information about this concept can be found in [Obe88]).

Dynamic integrity constraints concerning the order in which objects are created, deleted, or manipulated
must be guaranteed by the structure of the behaviour net. If e.g. an object @ which is created by a
transition T,, must exist before another object b can be created by a transition T}, then there must exist an
object flow from transition T, to T}, in the behaviour net. Other dynamic integrity constraints concern
absolute clock times or calendar dates.

In Petri Nets those temporal aspects are usually not considered, i.e. transition occurrences have no
duration and the tokens’ temporal availability is not restricted. Especially in office environments temporal
aspects like durations of activities, starting times of activities, time limits and availability times play an
important role. We use a clock based method first introduced in [Ric85] to model temporal restrictions in
Predicate/Transition Nets without leaving the framework of Net Theory. This is described in detail in
[ObL88].

V PROTOTYPING THE CONCEPTUAL SCHEMA
V.1 MOTIVATING THE PROTOTYPING APPROACH

It is widely recognized that a suitable integration of the enduser community in the development process is
essential for a successful implementation of information systems. However, the typical enduser is not

I Pre-defined predicates as insert, member, and remove are used, which are defined for example in [CIM87].
11

able to understand formal specifications like the conceptual schema of INCOME. Therefore a
communication gap appears that should be bridged by using suitable development strategies.

The advantages of prototyping in the field of interactive information system design to support
communication between all communities involved in the development process are often postulated (cf.
[BKM84]). Prototyping supports an early detection of design errors not yet detected by automatic
analysis. The enduser’s contributions in the design process as a result from working with early available
versions of a system usually improve the acceptance of the final implementation. Prototyping facilitates
the stepwise adaptation of the specification to changing requirements during the development process.
Those changes may arise from external influences concerning the environment of the application system
or may be caused by a better understanding of what the final system can do.

On the other hand, it must be noticed that prototyping may also lead to “dirty programming”, if it is
applied on the basis of fuzzy user concepts or if the system developer lacks any skills necessary for
successful prototyping. Moreover, one must point to the effects of conflicts between the interests of
different user communities which are dangerous especially for prototyping projects.

Therefore some authors (e.g. [Flo84, Rid84]) suggest the integration of prototyping approaches within
appropriate development strategies or life cycle methods. This suggestion has been adapted for INCOME
because the formal concepts of Petri Nets provide a solid basis for the use of prototyping techniques.

The INCOME prototyping approach supports prototyping in two different ways: First the conceptual
schema is treated as an operational specification (cf. [Zav84)) and hence may be executed directly by a
suitable interpreter without any compilation and linking. Second the conceptual schema is transformed to
an implementation in a selected target environment.

The advantages of using operational specifications are the prevention of inconsistencies between the
prototype and the underlying specification and the low time expense for preparing new prototypes after
changes of the system specification. While working with this specification only few implementation
aspects are considered - the focus is on determination of the conceptual plausibility of the specified
system. At this stage of prototyping it is not yet necessary to specify the system’s runtime environment.

To prove adequacy of the proposed solution with respect to implementation aspects and to provide a
suitable basis for the implementation of the future application system the transformation of the conceptual
schema to selected target environments is supported. The way this transformation is done, strongly
depends on the selected environment and especially on the tools to be used for further system
development. If there are powerful tools available for the runtime environment such as program
generators or fourth generation languages, the target system will be an interface data structure needed by
these tools. If there is only a conventional programming environment available, the conceptual schema
will be transformed to a set of almost complete program modules and a database schema.

The important features of the INCOME prototyping approach are the support of both the direct execution
of the - possibly incomplete - conceptual schema and the transformation to a suitable implementation. All
system aspects of the conceptual schema are made visible by prototyping.

The operational specification is presented in terms of forms which are first automatically generated on the
basis of the object structure schema and therefore may be used for the prototyping of this partial schema.

This generation process is further described in the following Section. System behaviour is presented as a
series of forms representing the objects flowing through the system. In Section V.3 prototyping of
system behaviour is illustrated by an example derived from the case study given in [LNO8S].

12

V.2 PROTOTYPING OF OBJECT STRUCTURES

INCOME already supports prototyping at the early stages of the development process. Usually the
system designer decides on the application of prototyping. This decision depends on the application area
as well as the user and designer preferences. Usually prototyping becomes possible at the moment when
the first complete object structures have been integrated in the conceptual object structure schema. This
first prototyping is done without any information about system dynamics.

The aim of object structure prototyping is to prove the plausibility of the already specified object
structures and to provide a starting point for the evolution of the object structure schema. Moreover,
working with the forms is a good means to teach the enduser to apply database-oriented software
systems.

Object structure prototyping proceeds as follows: Based on the conceptual object structure schema a set
of subschemas is generated that determines the internal structure of the forms. The external
representation of those forms is specified in a second step. The form specification is then interpretatively
executed providing the user with the usual operations such as insertion, deletion, update, and retrieval of
objects represented by those forms. If the presented forms do not meet the user requirements, the
specification will be manipulated possibly resulting in a modified object structure schema.

In the remainder of this Section the form specification technique will be briefly sketched. A characteristic
feature of this technique is that the specification consists of several components: a general structure
specification, a layout specification for the form, and layout specifications for each of the contained
fields. The structure consists of a subschema of the object structure schema and is generated
automatically with respect to the inheritance rules defined on the semantic hierarchy object model. In this
way the form structure corresponds to the structure of possibly complex objects which are relevant in the
application area.

A detailed description of the generation algorithm is given in [Sch89]. Due to space limitations this paper
only contains an example of a form structure with sink delivery information (cf. Figure 8), i. e. this form
can be used to work with objects of type delivery information. Now it is assumed that in a certain context
of the application system the user is only interested in a few parts of the objects of type delivery
information. These parts are recognizable by a darkened background. Starting with the complete form
structure, a graphical editor supports the interactive projection on the interesting parts of the structure. In
the example only object types with elementary value sets have been removed from the form structure.
However, removing an object type O from the structure generally causes the removal of that partial
structure which contributes to the domain of object type O.

As soon as the relevant form structure is specified, a draft external representation of the form is
generated. Figure 9 shows the external representation derived from the form structure of Figure 8. Note
that the form is already filled with example values.

Especially in the case of more complex form structures the generated draft representation does not satisfy
all of the individual user requirements. Hence a WYSIWYG forms editor is available which supports the
interactive modification of the external form representation and ensures consistency between the external
representation and the underlying structure of the form.

13

i)

o
address phone

X

o o (] o]
‘maximum re-order stock item type stock item type
level level code description

Figure 8: Form Structure with sink Delivery Information

Delivery Information

Supplier-No 43 Name Rymans

Coce Stock Item Name

1234 Parker fibre tip refill
3214 Xerox copying paper

Figure 9: Form Delivery Information

V.3 PROTOTYPING OF SYSTEM BEHAVIOUR

In the preceeding section we described the procedure of object structure prototyping by means of forms
derived from the conceptual object structure schema. However, the essential features of prototyping
should be the early availability of an executable system expressing the external appearance of all parts of
the conceptual schema. In this way the user of the prototype should be supported in checking the
plausibility of all specification aspects and especially the integration of these aspects in the entire schema.

14

Prototyping the conceptual schema with INCOME means executing the behaviour schema and the
integrated transactions with respect to the underlying static specification. Prototype execution is based on
the firing of transitions in the behaviour schema which is realized as a PROLOG-inscribed
Predicate/Transition-Net. However, the proposed procedure is also applicable for the more simple type
of Place/Transition-Nets without any arc or transition inscriptions. In this case the transactions - usually
specified by means of transition inscriptions - have to be simulated by user interaction.

Prototype execution is an interactive process, during which the user may ask questions like:

(1) Which transitions are enabled?

(2) Which are the enabling objects?

(3) Which transitions are in conflict with each other?
(4) Which transitions may occur concurrently?

(5) Which transitions may occur sequentially?

Prototype execution starts after initialization of the schema by insertion of objects in some of the places
of the behaviour schema. The objects are internally represented as PROLOG data structures; their
external representation are forms. The insertion of objects is supported by the forms interface outlined in
the previous Section.

For the determination of the enabled transitions the transition formulas have to be evaluated. For this
PROLOG programs are generated for each possibly enabled transitions. Each of these programs include
the possible input variables and the structures of the output variables as PROLOG clauses as well as the
transition formula as a PROLOG rule. These programs are then evaluated by a PROLOG interpreter.

Prototype execution will continue, if the user selects a single enabled transition, a set of such transitions
for firing concurrently, or a certain object to be processed. If this selection causes any conflict situation,
the conflict will be solved by application of a menu component asking the user for a decision.

The concurrently occurring transitions may be controlled via a multi-window interface. The consumed
objects may be inspected using the form interface. If there are any uninstantiated components of those
objects, the form interface will also support insertion of values in a way such that the transition formula
always holds. Analogously the interactive modification of output objects is supported. These utilities are
of great importance to enable prototype execution even at a time when transaction specification has not
yet been completed.

Firing a transition will now be further explained in a small example. Figure 10 shows the surrounding of
transition Update Stock Replenishment Data. Each of the input places contains one object each of them
given by its form representation. For the evaluation of the transition formula these objects must be
assigned to the input variables A and B.

Figure 11 shows the objects assigned to variables C and D after the evaluation of the transition formula.
Note that the components stock item and replenishment refer to uninstantiated variables and hence have
been instantiated by user interaction. The goal ia_create_stock replenishment_advice(D) explicitly
specifies this interactive step.

Firing the transition results in a new marking for the behaviour schema. Prototype execution will
terminate, if the user aks for termination or if no more enabled transitions can be found.

As also proposed in [WPS86] prototype execution is recorded by means of a so-called logfile. This file
may be the basis for runtime analysis and several statistics. At any moment the schema can be recovered
by markings stored in the logfile. Moreover, former sessions can be replayed by evaluating the logfile.

15

stock_change
advice

date 10/11/87

Update Stock Replenishment Data

p1(A) = pl(stock_change_advice(E)),

p2(B) = p2(current_no(F)),

GisF+1,

C = current_no(G),

D = stock_replenishment_advice(rep_no(G),E,_,),
ia_create_stock_replenishment_advice(D).

Figure 10: Firing of Transition Update Stock Replenishment Data

stock_change_
advice

pl(}—'A

rep_no 11 date 10/11/87 | .

replenishment 9

Update Stock Replenishment Data

p1(A) = pl(stock_change_advice(E)),

p2(B) = p2(current_no(F)),

GisF+1,

C = current_no(G),

D = stock_replenishment_advice(rep_no(G),E,_,_),
ia_create_stock_replenishment_advice(D).

Figure 11: Firing of Transition Update Stock Replenishment Data

16

stock item bicycle e

stock_replenishment_
advice

D p3

current_no

stock_replenishment_
advice

p3

current_no

VI INCOME TooL SUPPORT |
V1.1 ARCHITECTURE OF THE INCOME PROTOTYPE

Starting with the concepts described in the previous sections the prototype of the software development
environment INCOME has been implemented on personal computers IBM-AT running the operating
system MS-DOS2, The program modules are realized in PASCAL. Part of the system runs in a UNIX-
based workstation environment (cf. [OSS87]). The future plans are to redesign and reimplement the
whole INCOME system to run in a UNIX-based workstation environment.

Figure 12 shows the architecture of the running prototype. The INCOME system consists of three parts:
the operating environment, the INCOME toolbox and the development database.

Operating Envirenmant

:':',_USO!' s

Management i

_ Lontrot

INCOME Teolbox ‘

Conceptual Modelling

~ Object Structu

. Documentation Modelling
S = _Behaviour
Analysis = ; ~Modelling

o Program
Development

y

Develepmant Database

RDBMS INOVIS-X86 ~ MS-DOS Filesystem

Figure 12: Architecture of the INCOME Prototype

The kernel of the system - the INCOME toolbox - consists of several tools supporting the complete
software development process based on the INCOME method for conceptual modelling. The toolbox
offers tools to support functional requirements specification with object flow diagrams, conceptual
modelling including object structure modelling and behaviour modelling as well as documentation and
analysis tools. The toolbox also includes a set of tools for the prototyping of the system specification. To
support conventional program development tools like editors, compilers, debuggers, a linker and a
library manager have been integrated.

To link the tools, INCOME supports the indirect tool communication by providing well defined
interfaces to a central development database. The development database is managed using the extended
relational DBMS INOVIS-X863 and the MS-DOS file system. Although the used DBMS is well

2 MS-DOSisa registered trademark of Microsoft Corporation.
3 INOVIS-X86 is a trademark of INOVIS GmbH & Co., Karlsruhe, West-Germany
17

equipped for the management of development data and does a lot of integrity checking by itself, this is
not enough to preserve integrity of the INCOME development database. The main reasons are the
necessity of long transaction support and of proving integrity between the relational database and the
MS-DOS files. For application in the INCOME environment a concept has been designed based on three
mechanisms: data encapsulation by providing predefined operations for database updates, user controlled
execution of integrity checking procedures and integration of a knowledge based integrity preserving
component (this component called the design expert is still under development).

INCOME is implemented as an open system and therefore supports the augmentation of the toolbox by
tools of any kind. The operating environment is the component that provides a homogeneous surface for
tool applications and makes the elementary tools of the toolbox act somehow like a general macro tool.
For this purpose the environment offers utilities for user and tool management and supports a mechanism
controlling access between users and tools as well as inter-tool access.

The INCOME runtime control works as follows: Calling a tool means storing messages on top of a
system stack. Each of these messages consists of the identifiers of the sending and receiving tool, a time
stamp, the type and the value of a parameter. In this way a tool can of course call a series of tools. As
soon as execution of the sending tool is terminated, the central control component becomes active and
reads the messages on top of the stack, completes the set of parameters by a set of predefined default
values for the receiver, and - if access is permitted - deletes the messages from the stack and calls the
receiver with the computed parameter set. The INCOME system will terminate, if the system stack is
empty or if the user forces an abort.

V1.2 THE INCOME USER INTERFACE

It is well known that the user interface of a software development environment is an essential factor for
its valuation. The problem with such environments which are equipped with prototyping facilities is that
the skilled system designer as well as the usually inexperienced enduser applies the environment’s user
interface. To solve this problem INCOME supports both multi-modal and system-directed dialogue
techniques depending on the respective context. On the one hand, in the context of conceptual modelling
a technique is preferable where most part of the dialogue is guided by the system designer and where
direct manipulation of objects is supported. These are characteristic features of multi-modal dialogue
techniques. On the other hand, during prototype execution where the enduser is involved, a more
restrictive dialogue technique is appropriate.

Figure 13 shows an example of a screen possibly occurring during the execution of a behaviour net with
the INCOME prototyping facility. The window and menu techniques supported by INCOME are similar
to that of XEROX’s STAR (cf. [SIK82]).

The screen is divided up into five parts: the frame with the header on the top and a set of currency
indicators at the bottom, the menu bar with the top level functions, the scroll bars, and the working area.
The functions of the menu bar refer to the object displayed in the working area. In the example this object
is a behaviour net to be executed. More detailed functions are offered via pull-down menus usually
displayed after selection of a menu item (in our example the menu item Tools has been selected).
Depending on the functions that have been selected, further windows are popped-up in the working area.
Many functions require the direct selection of parts of the displayed object (sub-objects). Functions to be
applied on sub-objects are selected directly via pop-up menus which are displayed near the respective
sub-object. This technique speeds up and facilitates working with the INCOME tools.

18

S E=——————— INCOME / NET INTERPRETER Se—0E]

Net Tools Marking Conflict Logfile Notepad Window
v R
&
<
=
update stock stock |3 B—=—=—x= INCOME / FORMS HANDLE
withdrawal data 5 wrutc 7] Form Search Modify Storage Tra
stock change A -l2 B
advice /' N p

1@ 2@ em| [E === FORME—loE

RN G,

—_—
D
update stock stock
replenishment data reple:

Net Keep Stock on Hand Up to Date

Figure 13: Example Screen

VII SUMMARY AND OUTLOOK

In this paper INCOME has been described which is an integrated approach for conceptual modelling and
prototyping of information systems. Conceptual modelling depends on a functional requirements
specification in a hierarchy of object flow diagrams. INCOME supports the conceptual modelling of
object structures and system behaviour on both the user and the database level. The proposed method is
constructive in such a way that first draft versions of a new part of the specification are derived from the
already present parts of the specification.

Other special features of INCOME are the availability of a uniform formalism for the description of all
relevant system aspects and the possibility of working with early prototypes of the future system.

The prototypes provide a powerful forms interface that can be simply adapted to specific requirements of
the application. By this prototypes are well suited to be operated by the future enduser of the system.
INCOME supports both an interpretative and a transformative prototyping approach. As long as
conceptual modelling is still going on, the available prototypes consist of the specification itself and a
suitable interpreter. After termination of the specification step, INCOME provides tools for transforming
the conceptual schema into an appropriate target system. This system may be a set of program modules
together with a database description or an interface data structure to be further processed by using a
toolset which is possibly available for the target environment. The transformation step allows to combine
INCOME with application generators and fourth generation languages.

Our future plans can be sketched as follows:
e Completion of the INCOME tool set.

e Improvement of the components for conceptual schema analysis.
e Simplification of the handling of the sometimes complex transaction specifications.

19

o Completion of the interpretative prototyping component by enabling the evaluation of transaction
specifications.

e Implementation of interfaces to selected application generators or fourth generation languages
respectively (e.g. INGRES, NATURAL, ORACLE).

e Further examination of the INCOME approach in practical case studies (cf. [NSS88]).

e Reimplementation of INCOME in a UNIX-based workstation environment to overcome space
problems and to provide advanced graphical support.

REFERENCES

[AnL85] Antonellis, V. De and Leva, A. Di. DATAID-1: A database design methodology. Information Systems 10,2
(1985), 181-195.

[BKM84] Budde, R., Kuhlenkamp, K., Mathiassen, L., and Ziillighoven H. Approaches to Prototyping. Springer-Verlag,
Berlin, Heidelberg, 1984.

[BrR84] Brodie, M.L. and Ridjanovic, D. On the design and specification of database transactions. In On Conceptual
Modelling. Perspectives from Artificial Intelligence, Databases, and Programming Languages, M.L. Brodie, J.
Mylopoulos, and J.W. Schmidt, Eds. Springer-Verlag, New York, 1984.

[BRR87] Brauer, W., Reisig, W., and Rozenberg, G., Eds. Petri Nets: Central Models and Their Properties, LNCS 254,
Springer-Verlag, Berlin, Heidelberg, 1987.

[CIM87] Clocksin, W.F. and Mellish, C.S. Programming in PROLOG. Springer-Verlag, Berlin, Heidelberg, 1987.

[Flo84] Floyd, C. A systematic look at prototyping. In Approaches to Prototyping, R. Budde, K. Kuhlenkamp, L.
Mathiassen, and H. Ziillighoven, Eds. Springer-Verlag, Berlin, Heidelberg, 1984,

[HeR86] Heuser, C.A. and Richter, G. On the relationship between conceptual schemata and integrity constraints on
databases. In Database Semantics (DS-1), T.B. Steel jr. and R. Meersman, Eds. Elsevier Science Publishers
B.V., 1986.

[HNS87] Hohenstein, U., Neugebauer, L., Saake, G., and Ehrich, H.-D. Three-level specification of databases using an
extended entity-relationship model. In Informationsbedarfsermittlung und -analyse fiir den Entwurf von
Informationssystemen, Informatik-Fachbericht 143, R.R. Wagner, R. Traunmiiller, and H.C. Mayr, Eds.
Springer-Verlag, Berlin, Heidelberg, 1987.

[ISO82) Griethuysen, J.J. Ed. Concepts and Terminology for the Conceptual Schema and the Information Base, Report
of the ISO/TC97/SC5/WG3, Publ. No. ISO/TC97/SC5-N695, 1982.

[KiM84] King, R. and McLecod, D. A unified model and methodology for conceptual database design. In On Conceptual
Modelling. Perspectives from Artifical Intelligence, Databases, and Programming Languages, M.L. Brodie, J.
Mylopoulos, and J.W. Schmidt, Eds. Springer-Verlag, New York, 1984.

[Lau86] Lausen, G. Conceptual modelling based on net refinements. In Database Semantics (DS-1), T.B. Steel jr. and
R. Meersman, Eds. Elsevier Science Publishers B.V., 1986.

[Lau88] Lausen, G. Modelling and analysis of the behaviour of information systems. /[EEE Trans. Softw. Eng. 14, 11
(Nov. 1988), 1610-1620.

[LNO88] Lausen,G., Németh, T., Oberweis. A., Schonthaler, F., and Stucky, W. The INCOME Approach for
Conceptual Modelling and Prototyping of Information Systems. Forschungsbericht 194, Institut fiir
Angewandte Informatik und Formale Beschreibungsverfahren, Univ. Karlsruhe, 1988.

[Lun82] Lundeberg, M. The ISAC approach to specification of information systems. In Information Systems Design
Methodologies: A Comparative Review, T.W. Olle, H.G. Sol, and A.A. Verrijn-Stuart, Eds. North-Holland
Publ. Comp., Amsterdam, New York, Oxford, 1982.

[NaG82] Navathe, S.B. and Gadgil, S.G. A methodology for view integration in logical database design. In Proc. of the
8th Int. Conference on Very Large Data Bases. 1982, pp. 142-164,

[NiV86] Nichuis, S. and Victor, F. Modellierung und Simulation von PriT-Netzen in Prolog. Arbeitspapiere der GMD
231, Gesellschaft fiir Mathematik und Datenverarbeitung mbH, St. Augustin, 1986 (in German).

[NSS88] Németh, T., Schonthaler, F., and Stucky, W. Das experimentelle Entwicklungssystem INCOME. In

Anleitung zu einer praxisorientierten Software-Entwicklungsumgebung, Vol. 2, Th, Gutzwiller and H.
Osterle, Eds. AIT-Verlag, Hallbergmoos, 1988 (in German).

20

[Obe88]

[ObL.88]

[OSL86]

[OSS87]
[OST83)
[OSV82]
[Ric85)
[Rid84]
[Ros77]
[Sch84]
[Sch&9]
[SIK82]
[SmS77]
[SoK86]

[SOL87]

[StH86]
[Vos87]
(War86]
[WPS86]

[Zav84]

Oberweis, A. Checking database integrity constraints while simulating information system behaviour. In
Proc. 9th European Workshop on Applications and Theory of Petri Nets (Venice, Italy, June), 1988.

Oberweis, A. and Lausen, G. On the representation of temporal knowledge in office systems. In Proc. of the
IFIP TC8IWG 8.1 Working Conference Temporal Aspects in Information Systems (TAIS'87) (Sophia-
Antipolis, France), C. Rolland, M. Leonard and F. Bodard, Eds. North-Holland, 1988.

Oberweis, A., Schonthaler, F., Lausen, G., and Stucky, W. Net based conceptual modelling and rapid
prototyping with INCOME. In Proc. of the 3rd Conference on Software Engineering (Versailles, France, May
27-30). A.F.C.E.T., Paris, 1986, pp. 165-176.

Oberweis, A., Schonthaler, F., Seib, J., and Lausen, G. Database supported analysis tool for
Predicate/Transition Nets. Petri Net Newsletter 28, (Dec. 1987), 21-23.

Olle, T.W., Sol, H.G., and Tully, C.J., Eds. Information System Design Methodologies: A Feature Analysis.
North-Holland Publ. Comp., Amsterdam, New York, Oxford, 1983.

Olle, T.W., Sol, H.G., and Verrijn-Stuart A.A., Eds. Information System Design Methodologies: A
Comparative Review. North-Holland Publ. Comp., Amsterdam, New York, Oxford, 1982.

Richter, G. Clocks and their use for time modeling. In Information Systems: Theoretical and Formal Aspecis,
A. Sernadas, J. Bubenko jr., and A. Olivé, Eds. IFIP, 1985

Riddle, W.E. Advancing the state of the art in software system protolyping. In Approaches to Prototyping, R.
Budde, K. Kuhlenkamp, L. Mathiassen, and H. Ziillighoven, Eds. Springer-Verlag, Berlin, Heidelberg, 1984.

Ross, D.T. Structured analysis (SA): a language for communicating ideas. /[EEE Trans. Softw. Eng. 3,1 (Jan.
1977), 16-34.

Schiel, U. A semantic data model and its mapping to an internal relational model. In Databases - Role and
Structure, P.M. Stocker, P.M.D. Gray, and M.P. Atkinson, Eds. Cambridge Univ. Press, Cambridge, 1984.
Schonthaler, F. Rapid Prototyping zur Unterstiitzung des konzeptuellen Entwurfs von Informationssystemen.
Dissertation, Univ, Karlsruhe, 1989 (in German).

Smith, D.C., Irby, C., Kimball, R., and Harslem, E. The STAR user interface. In Proc. of the AFIPS
National Computer Conf., 1982, pp. 515-528.

Smith, J.M. and Smith, D.C.P. Database abstractions: aggregation and generalization. ACM Trans. Database
Syst. 2, 2 (1977), 105-133.

Solvberg, A. and Kung, C.H. On structural and behavioural modelling of reality. In Database Semantics (DS-
1), T.B. Steel jr and R. Meersman, Eds. Elsevier Science Publishers B.V., 1986.

Schinthaler, F., Oberweis, A., Lausen, G., and Stucky, W. Prototyping zur Unterstiitzung des konzeptuellen
Entwurfs interaktiver Informationssysteme. In Informationsbedarfsermittiung und -analyse fiir den Entwurf von
Informationssystemen, Informatik-Fachbericht 143, R.R. Wagner, R. Traunmiiller, and H.C. Mayr, Eds.
Springer-Verlag, Berlin, Heidelberg, 1987 (in German).

Studer, R. and Horndasch, A. Modeling static and dynamic aspects of information systems. In Database
Semantics (DS-1), T.B. Steel jr., and R. Meersman, Eds. Elsevier Science Publishers B.V., 1986.

Voss, K. Nets in data bases. In Petri Nets: Applications and Relationships to Other Models of Concurrency,
LNCS 255, W. Brauer, W, Reisig, and G. Rozenberg, Eds. Springer-Verlag, Berlin, Heidelberg, 1987.

Ward, P.T. The transformation schema: an extension of the data flow diagram to represent control and timing.
IEEE Trans. Softw. Eng. 12, 2 (Febr. 1986), 198-210.

Wasserman, A.lL, Pircher, P.A., and Shewmake, D.T. Building reliable interactive information systems. /[EEE
Trans. Softw. Eng. 12, 1 (Jan. 1986), 147-156.

Zave, P. The operational versus the conventional approach to software development. Comm. of the ACM 27,
2, (Febr. 1984), 104-118.

21

