
(

(

A Knowledge-Based Support System
for Embedded Computer Software Analysis

Kari Hakkarainen, Tuomas Thme & Markku Oivo

Technical Research Centre of Finland (VTT)
Computer Technology Laboratory
P.O. Box 201
SF-90S710ulu
FINLAND

ABSTRACT

The system specification support environment presented in this paper, PROSPEX (Product

Specification Expert), supports the RT-SA methodology. It not only provides graphic support

for drawing, but also helps the engineer in the analysis and design process itself. PROSPEX

analyses the quality and correctness of the RT-SA diagrams using knowledge-based

techniques. PROSPEX also includes features for supporting design reuse. The development

environment of PROSPEX was KEE expert system development shell running on a

Symbolics workstation!.

Keywords: Software Engineering. Structured Analysis.

Knowledge-Based Systems, Reuse

•
! This research was carried out as a part of the F1NPRIT research programme, funded mainly by the Technology
Development Centre of Finland (TEKES). Financial support was also provided by the Technical Research Centre of
Finland (VTI), Kone Corporation, Nokia-Mobira, and Edacom.

1. Introduction

The specification and design of real-time embedded systems is a complicated and error prone task. A

good design methodology is an essential prerequisite for the successful completion of the activities.

Yourdon's RT-SNSD (Real-Time Structured Analysis and Design) is among the most widespread

methods developed to assist in the initial phases of developing embedded real-time systems.

The origin of RT-SNSD stems from the structured design techniques developed during the 1970's.

The concept of data flow techniques, an essential part of RT-SA/SD, was developed by Tom DeMarco

[1979]. He integrated data flow technique with the earlier principles of structured design [Yourdon &

Constantine 1979]. Another important feature offered by the methodology is the view to the data

content of the system by using entity-relationship representations. Ward & Mellor [1985] augmented

these methods by introducing tools for representing the dynamic behaviour, that is control and timing,

which is essential in real-time systems. One of the reasons for the popularity of the RT-SNSD

methodology is that it integrates the three above mentioned representations in a systematic and (

uniform way.

Several computer aided tools have been introduced to support the RT-SNSD method [CASE Outlook

1988]. The recent tools have acceptable graphics capabilities for drawing the diagrams, but most of the

commercial tools are scarcely more than drawing assistants. They don't have profound knowledge of

the design methodology, not to mention any support for reuse.

The prototype presented in this paper, PROSPEX (Product Specification Expert), supports the real­

time structured analysis (RT-SA) methodology. It differs from the commercially available tools in that

it not only provides graphic support for drawing, but also helps the engineer in the analysis and design

process itself. PROSPEX analyses the quality and correcrness of the RT-SA diagrams using

knowledge-based techniques.

PROSPEX also includes features for supporting design reuse. In this, the goal of PROSPEX is to
provide lools for developing reusable designs, and using a collection of them in industrial production

of embedded computer systems.

The PROSPEX prototype! was built in a three-year research project that studied the state-of-the-art of

real-time structured analysis support. The goal of the project was to study and refine methods and tools

that meet the needs of real life analysis better than the current commercial tools. The ideas developed

within the project were demonstrated and highlighted through a prototype that realized the most

central features of the mentioned support. The actual implementation is discussed in more detail in

[Hakkarainen, Thme & Metcalfe 1989] and in [Metcalfe, Hakkarainen & Thme 1989]. Reuse is

discussed further in [Ihme 1989].

I In fact, we have two different prototypes. The features between the Iwo prototypes will nol. however. be distinguished
here.

1

\

The knowledge-based PROSPEX prototype was developed in KEE expert system development shell

running on a Symbolics workstation. We applied knowledge-based techniques primarily for two

different reasons. First, one of the objectives of the project was to study how well knowledge-based

techniques fit into implementing this kind of tools. We did not want just to make use of already

existing resolutions, but also wanted to have a look into the future possibilities (Figure I). The other
reason for using knowledge-based tools was that it would have been very difficult to implement the

wanted facilities with traditional approaches. Advanced knowledge-based techniques provide the

possibility of demonstrating and testing ideas in early phases, which is not the case when using

traditional tools.

(

(

YESTERDAY

LOW-LEVEL DESIGN TOOLS
Flowcharts
Action diagrams
Specification languages

Textual PRODUCTION

*
Graphic SOFTWARE- Program Description Languages - • Target executable code- .. Reusable software components

~.~ .. Configured for hardware
Target hardware configuration libraries

"'~
Tested and verified

3GLs (source code)
Assembler code f-

~. • ••
~ ,....

HIGH-LEVEL DESIGN
IMPLEMENTATION

TOOLS - TOOLS
Data flow diagrams Design - Code generators
Controillow diagrams - Database - r

Rapid prololYPlng
State transition diagrams Simulators.
Structure charts

~, Debuggers. TeSlbeds
Entity relationship diagrams
Oala structure diagrams Design rutes ~

~
and reusable

- • library know- TODAY
ledge base,

~

*
•- - EXPERT SYSTEM -- Automated assistants

FUTURE

I
Figure 1. Code generation yesterday, today and tomorrow. [CASE Outlook 1:6, p. 18. Reprinted with

permission ofCASE Consulting Group, Portland, Oregon, USA].

2

2. System Overview

PROSPEX can be used in two different configurations. The basic PROSPEX, Le. the kernel, includes

support for the RT-SA method. This configuration is totally application independent. The larger

configuration (C-PROSPEX) includes support for the creation of reusable designs, as well as

application specific domain knowledge. The two configurations appear to the user as one integrated

tool, and the partitioning is more a matter of implementation.

2.1 User Perspective

PROSPEX appears to the user as an intelligent RT-SA assistant. It offers the user the basic

environment with graphical and textual tools for creating and maintaining RT-SA documents. The user

interface, i.e. the external notation, conforms the RT-SA syntax, while the internal representation is
geared towards efficiency and flexibility. The internal structure and the rationale behind it are further

discussed in [Metcalfe, Hakkarainen, & Ihme 1989].

PROSPEX constantly controls the quality and correctness of diagrams during creation and

modification as a background process. Because an incomplete diagram cannot be analyzed thoroughly,

additional analyses can be activated once the system models are complete. The emphasis of the

implementation of PROSPEX is in this area: the tool helps the user in judging whether the design is

correct and if it does meet quality requirements. In addition PROSPEX guides different users to create

uniform design documents. The ultimate goal is to create more understandable documents and

facilitate easier maintenance.

2.2 Implementation

The logical structure of the PROSPEX prototype is layered (Figure 2). The basis for all the different

tools incorporated in the basic PROSPEX is the intelligent model editor. It is a totally application

independent package of graphical and textual tools for creating and editing RT-SA diagrams. The

kernel also includes a RT-SA primitive knowledge-base and a methodology rule base (Figure 3).

3

(

(

Reusable designs

Reuse tools and methods

/ ~
Model RT-SNSD Methodology

~rimitlve

~
ed~or nowledge base rule base

Kernel

Figure 2. The layered architecture ofthe PROSPEX.-prototype.

model editor

Design
methodology
objects

user

Design
metfiodology
rules

I
Figure 3. The main components of the PROSPEX kernel are a graphical model editor, a design

primitive knowledRe base and a design methodology rule base.

4

The intelligent model editor with related menus serve as the overall user interface for creating, viewing

and modifying RT-SA diagrams. The design primitive knowledge-base has defmitions for all the RT­

SA primitives and for their graphical appearance. The primitives are used to create internal frame

based models of diagrams as the engineer designs a system. The internal representation was geared

towards efficient manipulation, whereas the external representation conforms totally with the RT-SA

notation.

Each diagram and its elements are represented by a set of model elements having one or several

graphical instances. All the user interface actions affect the internal system model, and the graphical

diagrams merely mirror the model. Having the graphical representation separate from the system

model makes modifications easy and helps in guaranteeing consistency.

The user interface incorporated in the model editor is used, not only for drawing the diagrams, but also

for activating various analyzing functions. The related knowledge is declared in the design

methodology rule base.

3. Design Support

The user interacts with the PROSPEX prototype via a set of graphical and textual tools (Figure 4).

Through the graphical model editor, icons and menus the user inserts, modifies and evaluates designs,

or system models.

3.1 System Modelling

The creation of a model can start from anyone of the context, state transition, or entity relationship

diagrams, or the events list. Normally, the context diagram or events list would be chosen, but

PROSPEX supports any method. The user opens windows ("viewports", in the KEEpicture

terminology) and chooses elements from a menu which is accessed via the mouse. Additional

diagrams are opened as necessary. Editing is also mouse-and-menu based.

The RT-SA documents are constantly analyzed in the background to reveal errors in ccr,,:si~r,.cy .:nd

completeness during drawing. The constant background control ensures that all the prerequisites

needed in using the method successfully are met. The rules ensure certain features, such as

completeness and uniqueness, and reveal unwanted ones, such as logical malfunctions.

The modelled system can be both analyzed and viewed at any point. Various types of checks can be

initiated from the menu; in addition, certain illegal constructions (for example, having a input flow to a

transformation with an illegal source in the context diagram) are highlighted immediately.

5

. I

I LanurnJ orr l

0.
t~D SlcnUlt<;j .-. ~

0. '<:!l._
t""'l(ms OtVU"FI ,,' I I \

-0. I .

'~ COnuol '11, L"ntefnJ ,"::!iD IllU1l~fl~l..(>

0' \ I" ..
o- ~...... "tiD C(rlTl1O.. (;IX!<r' <~, '.",

<>lt€CnUJHlr.-f 6

El
DEMO

o
/".

: '1..../

dlwbll Inlbll
conuol_lonl conuol_lonr

(lllDvmr)

tnlbll
llluJtl.lnlt.e_llll.urn

I

I

LanterM On

lIIulDlnlt.e
UnUfllJ

I
(deeollrltlnr~OrT)

OiU.bll
UlU.llllnlt.e~l.nUln

I

o
DELETE

CO TO

Figure 4. The user interfaces with PROSPEX through an intelligent model editor. In addition to

manipulating RT-SA models, the editor is used to start various menu-based analysis/unctions.

In addition to checks and tests of correctness, a PROSPEX user can access information on the logical

structure of the created design. For example, a hierarchy of transformations can be displayed from the

top-level transformation.

A session can be terminated at any point, and the knowledge bases containing the modelled system

will be saved. Similarly, a system can be recalled for either editing or checking at a later date [Oivo &

Hakkarainen 1988].

6

I

3.2 Model Verification

Only partial design analyses are meaningful during the design process. More complete analyses can be

activated either automatically or by the user once a goal or subgoal of the design process is reached. In

the rule base, the design methodology is defined in terms of design objects and rules governing the use

of these objects. The purpose is to find out how well the RT-SA model meets the requirements of

good quality and correct features of the product itself. The characteristics analyzed include

communicability, naming, and scope. The analyzing function does not deal so much with the

unconditional RT-SA syntax rules, but with aspects of good quality design [Oivo & Hakkarainen

1988].

4. Design Reuse

Reuse has been recognized as one of the key factors in trying to improve quality and productivity in

software development. However, most of the attention in CASE is directed toward tools for

developing new software [CASE Outlook 1988], and there is still quite a gap between reusability ideas

and their efficient and effective implementations [Seppanen 1987].

Domain-independent reuse systems can be made flexible and generic, but it is commonly known that
only application specific systems reveal the real power of reuse. PROSPEX provides a domain­

specific infrastructure that relies on a quite wide spectrum of the RT-SA domain-independent system

design method. PROSPEX is an approach to explore and demonstrate how to develop reusable

designs, and how to use a collection of them in industrial production of embedded computer systems.

These problems are mutually dependent. The former presupposes knowledge of how reusable

resources are going to be reused, and the later the existence of appropriate reusable resources.

4.1 Reusable Knowledge

Production of reusable components is based on the domain structure and models [Prieto-Diaz 1987].

The approach is similar to that used in object oriented development. Some of the features desirable for

components supporting software reusability according to [Goguen 1984], [McCain 1985], [McCain

1986] and [St. Dennis et al. 1986] are taken into account in PROSPEX.

The interface of a component can be considered as a socket into which users can plug devices. Each

facet of the socket must be clearly defined [St. Dennis et al. 1986]. The syntax must not only be

correct, but should also convey some meaning. To achieve composability and plug compatibility,

actions based on results of the component should be made at the next level up. The type of parameters

should be defined (Le. typed), and the parameters should be checked and constrained to satisfy the

domain of the problem to be solved.

7

(

The components of PROSPEX are RT-SA basic items or composite components, whose types are the

characteristics of a product. A composite component is created from the RT-SA basic items and from

other composite components. The typed components are saved in a component library.

A reuse support system incorporates a variety of different knowledge types, each of which may require

representation and retrieval mechanisms of its own. Examples of different knowledge types are:

construction knowledge,

inspection knowledge,

design knowledge,

production process and target environment knowledge,

functional knowledge of components,

design analysis, and

product consultations.

The most visible of the knowledge types, the design knowledge, decomposes a complex design

problem into simpler design steps and guides the user through these simple design steps toward the

complex design goal. Design knowledge builds design kits, which provide prototype solutions and

examples that can be modified and extended to achieve a new goal instead of starting from scratch.

The design kits use component, construction and inspection knowledge to monitor, check and control

the design process. In the early design phases most of the design and reuse decisions are made on the

product model and subsystem levels.

4.2 Reuse Based Design Process

The model building process of the RT-SA method proceeds by deriving features of the model from

previous 'models and documents. We have built a trace mechanism to document this derivation

process. This documentation plays an essential role for reuse afterwards when modifying or

maintaining the model or reusing the model in building other models of the current system or models

of other systems.

A snapshot situation in a reuse based software design process is shown in Figure 5. At the top of the

figure there is the library of reusable components. Systems are completely modelled RT-SA systems

and consist of components from the lower levels. Subsystems are composite components modelled up

to the terminator level of the RT-SA method. Composite components are combined from basic

components and other composite components. The basic components are typed RT-SA items.

8

I

Library of Reusable Components

Systems Subsystems

ISignalling I
Composite
Components

Basic
Components

LOGICAL MODE S \
Ir------"------, \

Logical Model of
Signalling 1\

PHYSICAL MODELS

Physical Model of
Signalling

Environment
Model

Processor
Environment
Model

- --

Software
Environment
Model

Event Objects

Control Gong
/ ,

/ Control "
I Lanterns I

\ and Gong I

Behavioral V ~ , / /.~

\

' M~~e~ _ , ' ~(;:~V ~i;I - - ~
'- "'// ,\ _..-J:::: ...-
~--.." \ ----:::--

-, Control ,k /

'" Gong /~ L-__-+/+1 ---'

, , - - - / ::::::: 0--

If>
'-----------'

'-- ".Jt\\\L-~____..,H_--------'
'\' / /

Motivation Information II
Requirements ~ Design Decision
Objects)J Objects

.'::::t==t~r-:Tfihh.e~RR.::eq:;;u-;;i;:;re:;:m;;;e:-;n~ts;-1S=V Control Lanterns
~ ~£~o~rSG~o~n~g~d~e~v~ic::e_---l~=t::/~ and Gong

Note objects

Figure 5. An example of reuse based software design process. The basic reuse mechanisms can be
seen as an integral part of the RT-SA methodology, and the reuse component structure is similar to

that ofnormal RT-SA components. In addition to usual RT-SA support, PROSPEX provides also
support for automatic tracing, storing ofmotivation information, and use of library components.

9

(

The logical model building process proceeds by deriving features of the logical model from narrative

requirements and previous features of the model [Ward & Mellor 1985) and by reusing the logical

models of components in the reuse library. The elements of the environment model are external

events, terminators, flows, and stores on the context schema. Because the most likely omission in a

narrative requirements document is a systematic description of event dependencies[Ward & Mellor

1985), we have implemented event objects that describe an event and define its inputs and outputs.

The physical model is derived from the logical model and from previous features of the physical

model under the consttaints of the narrative requirements document, and by reusing the physical

models in the reuse library (Figure 5). The ttace objects are used to describe and check the connections

between the logical and physical models.

Motivation objects are used to capture and describe useful background knowledge of components.

Individual requirements in the narrative requirements document are saved in requirements objects. that

are used to construct ttaces between the narrative requirements and the models. A Design-Decision

object includes the recorded design decisions about the object. Note objects gather comments and

temporary motivations that cannot be assigned to any above information type when they are created.

5. Experiences and Future Research

The ideas presented in this paper were developed within a three-year research project. Centtal issues

have been demonsttated by the PROSPEX prototype that was built using the KEE tool on a Symbolics

workstation. The prototype implemented the basic mechanisms described in this paper for the creation,

manipulation and analysis of designs based on Yourdon's RT-SA methodology. The prototype is not a

complete product, but was rather built to highlight the research results. The features of the prototype

should thus be seen in that respect. Further discussion of the implementation can be found in

[Metcalfe. Hakkarainen & Ihme 1989].

Knowledge-based techniques proved well-suited in demonsttating and evaluating the results of a

research project. The knowledge-based tools were found befitting when prototyping the

implementation of ideas. The software and hardware environment we used is, however, too

complicated. inefficient and clumsy for implementing a full scale structured analysis tool.

As follow-up we have initiated the Reuse Assistant project which studies and develops knowledge- I
based support for reusing structured analysis designs in industrial embedded computer software

production. The key issues in that project are:

10

1. To develop methods for building, using and maintaining libraries of reusable components

that can be applied to practical software construction in the short term.

2. To integrate existing approaches that support practical reusability in the construction of

embedded software systems.

3. To evaluate and demonstrate the application of methods and representations in the

construction of a library of components in an embedded system domain, and demonstrate its

use in the practical construction of software systems.

6. Conclusions

Using knowledge based techniques makes it possible to implement extensive analysis of the

correctness and quality of RT-SA documents. It can provide an engineer with a sophisticated RT-SA

tool instead of mere drawing support. This enables the engineer to concentrate on the creative and

most fundamental tasks of a design process.

Knowledge representation mechanisms are very important from the viewpoint of system functionality.

By having an efficient internal representation and by separating the models from their graphical

appearances we guaranteed efficiency, extendability and easy modifiability. Knowledge-based

techniques proved to fit well in prototyping a tool such as described in this paper, but use of them in

implementing a real scale tool should be evaluated carefully.

Domain-independent reuse requires complex techniques for acquiring reusable components, and

strongly domain-specific approaches need sophisticated methods for capturing the domain knowledge.

PROSPEX is a knowledge-based software design reuse system that combines the benefits of the two

approaches. It exploits application specific knowledge by following established reuse practices.

PROSPEX supports both the development of reusable designs and the use of them in the industrial

production of embedded computer systems. For development, PROSPEX provides a graphics-based

user interface and an effective frame-based knowledge representation scheme. A menu-based library

component catalogue and graphical visualization facilities are also available.

Once the components are properly specified, it is possible to reuse the same component in different

product families and in different versions of one product. Product knowledge can also be used in semi­

automating some design steps and giving intelligent advice and product consultations. It moves a

considerable amount of the analysis and design effort of embedded real-time systems into defining the

product itself.

II

(

References

CASE Outlook 1988. CASE Tools for Reverse Engineering. CASE Outlook 2, 2, p. 1.

DeMarco, T., 1979. Structured Analysis and System Specification. New York, Yourdon, Inc. 352 p.

Goguen, J. A. 1984. Parameterized Programming. IEEE Transactions on Software Engineering SE-IO,

5, pp. 528 - 543.

Hakkarainen, K., Ihme, T. & Metcalfe, M. 1989. PROSPEX: A Knowledge-Based CASE Tool. The

Second Scandinavian Conference on Artificial Intelligence. June 13-15, 1989, Tampere, Finland.

Ihme, T. 1989. A Knowledge-Based Support System for the Reuse of Structured Specifications and

Designs of Embedded Computer Systems. The First Nordic Conference on Advanced Systems

Engineering May 9-11, IGsta, Sweden.

Ihme, T., Hakkarainen, K.& Kurki, M. 1988. Knowledge-based Support for Software Design Reuse,

Finnish Artificial Intelligence Symposium, STEP-88, Helsinki, Finland, August 15 -18 1988.

McCain, R. 1985. A Software Development Methodology for Reusable Components. Proceedings of

the Eighteenth Annual Hawaii International Conference on System Sciences 1985, pp. 319 - 324.

McCain, R. 1986. Reusable Software Component Construction: A Product-Oriented Paradigm.

(unpublished) ffiM Federal Systems Division, Houston TX.

Metcalfe, M., Hakkarainen, K. & Thme, T. 1989. A Structured Analysis and Design Tool Based on

Frames and Relationship Modelling (in preparation).

Oivo, M. & Hakkarainen, K. 1988. A Knowledge-based Support System for Embedded Computer

Software Analysis and Design. Finnish Artificial Intelligence Symposium, STEP-88, Helsinki,

Finland, August 15 -18 1988.

Prieto-Diaz, R. 1987. Domain Analysis for Reusability. Proceedings, Compsac87, fukyo, Vetober, pp.

23-29.

Seppanen, V. 1987. Reusability in Software Engineering. In: Freeman, P.,

Reusability, IEEE Computer Society Press, Washington D.C., 1987, pp. 286-297.

12

Tutorial: Software I

St. Dennis, R. et al. 1986. Measurable Characteristics of Reusable Ada Software. Ada Letters 5, 2, pp.

41-49.

Ward, P. & Mellor, S.1., 1985 Structured development for Real-time Systems, Vol 1...3, New York,

Yourdon, Inc.

Yourdon & Constantine 1979. Structured Design, Prentice-Hall, Englewood-Cliffs, New Jersey.

13

