
Best-practice time point ontology for event calculus-
based temporal reasoning 

 

Robert C. Schrag 

Digital Sandbox, Inc. 
McLean, VA USA 

bschrag@dsbox.com 
 
 

Abstract—We argue for time points with zero real-world 

duration as a best ontological practice in point- and interval-

based temporal representation and reasoning.  We demonstrate 

anomalies that unavoidably arise in the event calculus when real-

world time intervals corresponding to finest anticipated calendar 

units (e.g., days or seconds, per application granularity) are taken 

(naively or for implementation convenience) to be time “points.”  

Our approach to eliminating the undesirable anomalies admits 

durations of infinitesimal extent as the lower and/or upper 

bounds that may constrain two time points’ juxtaposition.  

Following Dean and McDermott, we exhibit axioms for temporal 

constraint propagation that generalize corresponding naïve 

axioms by treating infinitesimals as orthogonal first-class 

quantities and we appeal to complex number arithmetic 

(supported by programming languages such as Lisp) for 

straightforward implementation.  The resulting anomaly-free 

operation is critical to effective event calculus application in 

commonsense understanding applications, like machine reading. 

Index Terms—temporal knowledge representation and 

reasoning, event calculus, temporal ontology best practices, 

temporal constraint propagation  

I.  INTRODUCTION 

Machine reading technology recently has been applied to 
extract temporal knowledge from text.  The event calculus [8] 
presents appropriate near-term targets for formal statements 
about events, time-varying properties (i.e., fluents), and time 
points and intervals.  While at least one implemented event 
calculus-based temporal logic [2] also has included calendar 
dates and clock times, most classical event calculus treatments 
address real-world time only abstractly.  None so far has 
adopted the carefully crafted formulation of points (instants), 
intervals, dates, and times in Hobbs’ and Pan’s RDF temporal 
ontology [4]—which correctly treats all time units as intervals.  
We say, “correctly,” because the casual treatment of a calendar 
or clock unit as a time point unavoidably leads to undesirable 
anomalies.  This point may be subtle—ISO standard 8601 [3] 
pertaining to representation of dates and times states, “On a 

time scale consisting of successive steps, two distinct instants 
may be expressed by the same time point,” and also 
(unfortunately, apparently circularly) defines an instant as a 
“point on the time axis.”  We hope, by demonstrating 
anomalies resulting from incorrect time point treatment and by 
presenting effective correct implementation techniques, to 
motivate future best-practice event calculus-based applications. 

II. EVENT CALCULUS ONTOLOGY AND AXIOMS 

We have implemented a temporal reasoning engine for an 
event calculus variant including the following ontological 
elements.   

• Time intervals are convex collections of time points—
intuitively, unbroken segments along a time axis.   

• The ontological status of time points is an issue 
contended here.  We argue that in the best practice they 
are taken to be instants with no real-world temporal 
extent, while naïvely (we argue incorrectly) finest 
anticipated calendar or clock units—which actually are 
intervals—have been taken as time “points.”  We take 
a time point to be a degenerate time interval—one 
whose beginning and ending points both are the time 
point itself. 

• Fluents are statements representing time-varying 
properties—e.g., the number of living children a 
person has.   

• The events of interest occur at individual time points 
and may cause one or more fluents to change truth 
value.  E.g., the event of adopting an only child will 
cause the fluent hasChildren(Person, 0) to become 
false and the fluent hasChildren(Person, 1) to become 
true.   

Figure 1 exhibits axioms defining the predicates we use to 
say when fluents “hold” (are true) and when events “occur” 
(happen).   



holdsThroughout(fluent, interval) ↔ ∀(point): pointInInterval(point, interval) → holdsAt(fluent, point) 
holdsThroughout(fluent, interval) ↔ ∀(sub): hasSubInterval(interval, sub) ˄ holdsThroughout(fluent, sub) 

holdsAt(fluent, point) ↔ ∃(interval): intervalIsPoint(interval, point) ˄ holdsThroughout(fluent, interval) 

holdsWithin(fluent, interval) ↔ ∃(sub): hasSubInterval(interval, sub) ˄ holdsThroughout(fluent, sub) 

occursWithin(event, interval) ↔ ∃(point): pointInInterval(point, interval) ˄ occursAt(event, point) 

Figure 1. Axioms relating holds and occurs predicates.  Variables appearing on the left-hand side of an initial implication are 

universally quantified.  Variables introduced on the right-hand side are quantified as indicated.  The predicates relating time 

points and intervals are defined in the appendix. 

Informally, a fluent holds throughout an interval I iff it 
holds at every point and throughout every subinterval contained 
by I.  It holds (or occurs) within I iff it holds (or occurs) within 
some subinterval (or point) contained by I. 

In the naïve approach, it’s perfectly acceptable to assert that 
a fluent holds or that an event occurs “at” a specific “point” on 
the calendar or clock.  We believe that under the preferred 
approach, in which the only (true) points directly accessible 
delimit the boundaries of measured time units, such assertions 
(or even queries) should be rare—perhaps limited to issues of 
legal status (e.g., one reaches the age of majority at exactly 
12:00 midnight on one’s 21st birthday).  Thus, we commend 
preferred use of holdsWithin and occursWithin to replace naïve 
use of holdsAt and occursAt.   

Besides being correct, the preferred approach is also more 
robust.  In the naïve approach, supposing an enterprise decides 
to enhance its represented granularity from days to hours, it 
will need to replace all existing occurrences of holdsAt with 
holdsWithin (because its working definition of a “point” will 
have changed).  As such, naïve approach users might as well 
avoid holdsAt and just use holdsWithin, which has equivalent 
semantics when its interval argument is a time point. 

A given event calculus application also will include axioms 
to indicate which transition events initiate or terminate which 
fluents, as summarized by Schrag [7].  We don’t need that 
much detail here, however, to demonstrate our concerns about 
undesirable anomalies arising from the naïve approach. 

III. ANOMALIES ARISING FROM THE NAÏVE TIME POINT 

APPROACH 

We discuss the following anomalies. 

A. Inability to order time points within a finest 
represented time unit (e.g., a calendar day—see 
section A) 

B. Inability to avoid inferred logical contradiction 
when contradictory statements hold at different 
real-world times within a finest represented time 
unit (see section B) 

C. Inability to order real-world events occurring 
within a finest represented time unit (see section 
C) 

D. Inability to avoid inferred logical contradiction 
when real-world events occur within a finest 
represented time unit and initiate contradictory 
fluents (see section D) 

The time map in Figure 2 illustrates these anomalies, as 
discussed in the following subsections. 

12:00 AM

hasMaritalStatus(John, Married)

11:59 PMA B

hasMaritalStatus(John, Married)

hasMaritalStatus(John, Unmarried)

DivorceEvent(John, Sally) MarriageEvent(John, Mary)

,
,

 
Figure 2.  Time map illustrating naïve approach anomalies.  Fluent observations (top) include fluents and the intervals 

throughout which they hold.  Dark-filled points indicate that associated fluents are known not to hold beyond their intervals’ 

beginning or ending.  Constraint graphics (with arrows) are defined in Figure 9, in the appendix.  Transition event occurrences 

(middle) include the events and points where these occur.  Contradictory fluents cannot overlap temporally, and, per event 

calculus convention, initiated fluent observations begin immediately after triggering transition events.  The calendar (bottom) 

shows the initial and final minutes of a given day, plus two included time points, ordered as shown. 



A. Inability to order time points 

As is apparent in Figure 2, this basic problem underlies the 
other three listed above.  In the naïve approach, the only way to 
order time points is to associate them with distinct finest 
calendar or clock units.  Suppose days are the finest time unit 
represented.  We’d like to assert the point-wise temporal 
relations (i.e., constraints) Figure 2 indicates, but in the naïve 
approach such constraints would be contradictory—all the 
points shown would resolve to the same calendar day’s time 
“point,” which cannot precede itself.  This anomaly can be 
particularly troubling in the representation of statements 
extracted by machine reading from news articles, which 
frequently exhibit only calendar dates but cover sequences of 
events occurring within single days.  The option of discarding 
such fine ordering information—and treating all within-day 
events as if they were simultaneous—is equally problematic.  
Rendering event orderings correctly is critical to representing 
causality—just one fundamental element of a true 
commonsense understanding that machine reading is hoped 
ultimately to support. 

Even when our representation isn’t fine enough to specify 
absolutely when during a given day (e.g.) a time point occurs, 
when we can order the points, we can avoid contradictions 
resulting from an incorrect presumption of simultaneity.  
Absent total (or even partial) ordering, we also can still 
hypothesize orders that might not lead to contradictions. 

B. Inability to order contradictory holds statements 

A person can’t be both married and unmarried at the same 
time, as would be required if all the constraint-linked points in 
Figure 2 were collapsed onto a single day “point.”  In the naïve 
approach, it is (from a real-world perspective) as if we forced 
every marriage or divorce (indeed, every event) to occur at the 
stroke of midnight.   

C. Inability to order events 

In the naïve approach, we can say that a person divorced 
one spouse and married another on the same day, but we can’t 
say in what order these events occurred.   

D. Inability to order occurs statements initiating contradictory 

fluents 

Without the ability to order events, we don’t know whether 
any axiom proscribing polygamy has been violated or not.  An 
implementation might take one position or another, depending 
on the order in which it happened to visit the transition events 
and to apply its rules for initiating and terminating fluents, 
detecting contradictions, and propagating constraints. 

IV. TEMPORAL CONSTRAINT REPRESENTATION AND 

PROPAGATION 

Compared to an application’s finest represented calendar or 
clock unit, available real-world information may be more or 
less precise.  E.g., we may know the year that a given event 
occurred but not the month or the day.  If our finest represented 
units are days, this gives us an earliest and a latest possible date 
on which the event could have occurred (the first and last days 
of the year given).  We use the notation distance(a, b, [x, y]) to 
indicate that the number of finest time units along a path from 
time point a to time point b has as a lower bound x and as an 
upper bound y.   

Rather than expose our system-internal time units, we 
provide a user interface in terms of calendar and clock units—
affording users source code-level robustness against future 
granularity enhancements.  A distinguished calendar/clock 
point (e.g., the beginning point of the interval for 12:00 
midnight, January 1, 1900) affords a reference against which 
the distance to other dates/times is calculated.   

We refer to an asserted distance statement (or to a user-
provided statement from which it is derived) as a temporal 
constraint. 

Real-world information also may give us only qualitative 
information about the relationship between two time points—
e.g., one is before or one is after the other.  The following two 
figures exhibit axioms to define qualitative relations among 
time points—Figure 3 following the naïve approach, Figure 4 
the preferred one.  (See also Figure 9 in the appendix for 
graphical definitions of these relations.)  Notice that the only 
difference between these two axiom sets is in their 
representation of the smallest possible distance between any 
two time points.  In the naïve approach, it is one finest time 
unit.  In the preferred approach, it is arbitrarily small—taken to 
be infinitesimal. 

timePointEqualTo(a, b) ↔ distance(a, b, [0, 0]) 
timePointLessThan(a, b) ↔ distance(a, b, [1, ∞]) 
timePointGreaterThan(a, b) ↔ distance(a, b, [–∞, −1]) 
timePointGreaterThanOrEqualTo(a, b) ↔ distance(a, b, [0, ∞]) 
timePointLessThanOrEqualTo(a, b) ↔ distance(a, b, [–∞, 0]) 
hasNextTimePoint(a, b) ↔ distance(a, b, [1, 1]) 
hasPreviousTimePoint(a, b) ↔ distance(a, b, [−1, −1]) 
timePointTouching(a, b) ↔ distance(a, b, [−1, 1]) 
timePointGreaterThanOrTouching(a, b) ↔ distance(a, b, [−1, ∞]) 
timePointLessThanOrTouching(a, b) ↔ distance(a, b, [–∞, 1]) 

Figure 3.  Axioms defining qualitative relations between time points in the naïve approach, where finest time units are treated as 

“points” and the smallest possible distance is one such time unit 



timePointEqualTo(a, b) ↔ distance(a, b, [0, 0]) 
timePointLessThan(a, b) ↔ distance(a, b, [ϵ, ∞]) 
timePointGreaterThan(a, b) ↔ distance(a, b, [–∞, −ϵ]) 
timePointGreaterThanOrEqualTo(a, b) ↔ distance(a, b, [0, ∞]) 
timePointLessThanOrEqualTo(a, b) ↔ distance(a, b, [–∞, 0]) 
hasNextTimePoint(a, b) ↔ distance(a, b, [ϵ, ϵ]) 
hasPreviousTimePoint(a, b) ↔ distance(a, b, [−ϵ, −ϵ]) 
timePointTouching(a, b) ↔ distance(a, b, [−ϵ, ϵ]) 
timePointGreaterThanOrTouching(a, b) ↔ distance(a, b, [−ϵ, ∞]) 
timePointLessThanOrTouching(a, b) ↔ distance(a, b, [–∞, ϵ]) 

Figure 4.  Axioms defining qualitative relations between time points in the preferred approach, where all time units are treated as 

intervals and we use an infinitesimal (denoted ϵ) to separate points that are (in the limit) “adjacent” 

Both approaches use infinity (denoted ∞) to represent the 
largest possible distance between time points.  Handling this in 
temporal constraint propagation (computing tightest distance 
bounds, considering all constraints) requires axioms defining 
non-standard arithmetic, as in Figure 5.  Figure 6 exhibits 
axioms for the constraint propagation process in which Figure 
5’s arithmetic axioms are applied.  Note that all but the last of 
Figure 5’s axioms handle only the infinities specially.  By 
treating the positive infinitesimal denoted ϵ as the imaginary 
number i (as in [2][5][6]) and by appealing to complex 
arithmetic, we can use the same axioms to support propagation 
in both approaches.   

Note that in the naïve approach using only real numbers all 
the imaginary parts will be zero.  The only substantive 

difference between the two approaches’ computational 
complexity for constraint propagation is that the preferred 
approach enables finer (and thus more numerous unique) 
constraints.   

Implementation is straightforward for addition and 
arithmetic negation in a programming language such as Lisp 
that supports complex numbers and arithmetic.  While complex 
numbers with unequal real and/or imaginary parts are 
incomparable with respect to magnitude, in our imaginary-as-
infinitesimal interpretation the real parts always dominate and 
the imaginary parts are compared only when the real parts are 
equal—per the last axiom defining finite>, in which the 
predicates real>, real=, and imaginary> invoke the indicated 
comparisons on the real and imaginary parts of their arguments.   

infinite(–∞) 
infinite(∞) 

infinite+(–∞, –∞, –∞) 
infinite+(∞, ∞, ∞) 
infinite+(a, –∞, –∞) ← ¬infinite(a) 
infinite+(–∞, b, –∞) ←¬infinite(b) 
infinite+(a, ∞, ∞)← ¬infinite(a) 
infinite+(∞, b, ∞) ← ¬infinite(b) 
infinite+(a, b, a + b) ← ¬infinite(a) ˄ ¬infinite(b) 

infinite–(–∞, ∞) 
infinite–(∞, –∞) 
infinite–(a, –a) ← ¬infinite(a) 

infinite>(∞, –∞) 
infinite>(a, –∞) ← ¬infinite(a) 
infinite>(∞, b) ← ¬infinite(b) 
infinite>(a, b) ← ¬infinite(a) ˄ ¬infinite(b) ˄ finite>(a, b) 

finite>(a, b) ← real>(a, b) ˅ (real=(a, b) ˄ imaginary>(a, b)) 

Figure 5.  Axioms supporting constraint propagation arithmetic (addition, subtraction, and comparison) over temporal duration 

bounds of infinite extent 

distance(b, a, [–y, –x]) ↔ distance(a, b, [x, y]) ˄ infinite–(x, –x) ˄ infinite–(y, –y) 
distance(a, b, [w, y]) ← distance(a, b, [x, y]) ˄ distance(a, b, [w, z]) ˄ infinite>(w, x) 
distance(a, b, [x, z]) ← distance(a, b, [x, y]) ˄ distance(a, b, [w, z]) ˄ infinite>(y, z) 
distance(a, c, [mo, np]) ← distance(a, b, [m, n]) ˄ distance(b, c, [o, p]) ˄ infinite+(m, o, mo) ˄ infinite+(n, p, np) 

Figure 6. Axioms for propagating lower and upper temporal bounds to infer tightest bounds considering all constraints 



Day 1 Day 2

[ϵ, ∞] [ϵ, ∞] [ϵ, ∞]

[ϵ, 1–2ϵ] [ϵ, 1–2ϵ] [ϵ, 1–2ϵ]

[2ϵ, 1–ϵ]

[1, 1]

[5, 7]

[6, 8]

[6–2ϵ, 7+ϵ]

A B C
 

Figure 7.  Raw (solid arrow) and inferred/propagated (dashed arrow) constraints, with lower and upper bounds, in the preferred 

approach.  Constraints have directions indicated by arrows (all oriented from left to right) 

V. HOW THE PREFERRED APPROACH AVOIDS ANOMALIES 

To see how constraint propagation works—and avoids 
anomalies—in the preferred approach, see Figure 7, which 
supposes days are our finest time unit.   

By way of raw constraints, we know that points A and B 
both fall between Day 1 and Day 2, that A follows B, and that 
point C is between five and seven days after Day 2.  For clarity, 
Figure 7 omits the [ϵ, ∞] constraint from Day 1 to B and from 

A to Day 2, as well as many inferred constraints relating pairs 
of points not connected in the figure.  The two-dimensional (in 
the implementation, complex) arithmetic treating infinitesimal 
and non-infinitesimal quantities orthogonally effectively 
maintains qualitative point ordering—both within finest 
represented calendar or clock unit boundaries (e.g., relating 
points A and B) and across them (relating B and C).  See 
Figure 8. 

ϵ ϵ 1–2ϵ [5, 7]

[6–2ϵ, 8–2ϵ]

Day 1 Day 2B CA

Day 1 Day 2

ϵ 1–2ϵ ϵ [5, 7]

[5+ϵ, 7+ϵ]

A B C

1–2ϵ ϵ [5, 7]

[5+ϵ, 7+ϵ]

ϵ

Day 1 Day 2A B C
 

Figure 8.  Extreme cases for the time points A and B in Figure 7, including (at the extremes) greatest lower and least upper 

bounds in the inferred constraints shown there 



As we explained in section III, resolving this time point 
ordering anomaly simultaneously resolves the other three 
anomalies described there as well.  Now, we also can order the 
events that occur at time points and avoid spurious 
contradictions that arise from the naïve approach’s inability to 
order events and fluent observations.  When our finest time 
units are days, we no longer have to pretend that all events 
occur at the stroke of midnight.  With appropriate ordering of 
events, we’ll be able to put machine reading in a better position 
to support commonsense understanding of causality. 

VI. SUMMARY 

We have demonstrated temporal reasoning anomalies that 
arise when implementation of the event calculus naively 
follows classical treatments that casually treat finest 
represented calendar or clock time intervals as “points.”  We 
have presented axioms and described implementation 
techniques to resolve these anomalies when all time intervals 
are correctly treated as time intervals and when time points are 
taken to be instants with zero real-world duration extent.  We 
argue that this preferred approach, rather than the naïve one, is 
needed for the event calculus to be useful in applications, like 
machine reading, intended to support commonsense 
understanding including causality. 
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APPENDIX: TIME POINT AND INTERVAL RELATIONS 

The set of predicates illustrated in Figure 9 (repeated from 
Figure 4) supports every qualitative binary time point relation 
over the time point distance landmark values indicating 
equality, adjacency, and lack of constraint above or below.  (A 
user also may specify arbitrary bounds on the number of time 
units intervening between any two points.)  As illustrated in 
Figure 10 selected examples, this point orientation yields a 
much broader set of qualitative interval relations than does 
Allen’s classical formalism [1], which is purely interval 
oriented, without points. 

 



[0, 0]

[ϵ, ∞]

[−∞, −ϵ]

[0, ∞]

[−∞, 0]

[ϵ, ϵ]

[−ϵ, −ϵ]

[−ϵ, ϵ]

[−ϵ, ∞]

[−∞, ϵ]

marked 

time points are 

consecutive.

timePointEqualTo(S,O)

timePointLessThan(S,O)

timePointGreaterThan(S,O)

timePointLessThanOrEqualTo(S,O)

timePointGreaterThanOrEqualTo(S,O)

hasNextTimePoint(S,O)

hasPreviousTimePoint(S,O)

timePointTouches(S,O)

timePointLessThanOrTouching

timePointGreaterThanOrTouching

pointInInterval

pointIsInterval

Subject on top
Object on bottom

marked 

time points may 

not coincide.

,

‘ ∞ = Infinite

duration

[lower, upper] bounds on the calendar or clock distance (in the 
preferred approach) from time point S to time point O

‘

‘

‘

‘

,

ϵ = Infinitesimal

duration

 
Figure 9.  Qualitative relations over time points, with graphical icons that we use to illustrate the definitions of point-and-interval 

relations (here) and interval-interval relations (in Figure 10).  Such illustrated definitions include beginning and ending points 

super-imposed on interval icons, to elucidate the constraints. 

 

timeIntervalBefore(S,O)

timeIntervalFinishedBy(S,O)

timeIntervalOverlaps(S,O)

timeIntervalIntersects(S,O)

,

‘

‘

‘

‘

hasSubTimeInterval(S,O)

timeIntervalStarts-X(S,O)

timeIntervalMeets-X(S,O)

timeIntervalEquals(S,O)

timeIntervalTouches(S,O)

 

Figure 10.  Selected relations over time intervals (with defined time point relations indicated) 


