
Best-practice time point ontology for event calculus-
based temporal reasoning

Robert C. Schrag

Digital Sandbox, Inc.
McLean, VA USA

bschrag@dsbox.com

Abstract—We argue for time points with zero real-world

duration as a best ontological practice in point- and interval-

based temporal representation and reasoning. We demonstrate

anomalies that unavoidably arise in the event calculus when real-

world time intervals corresponding to finest anticipated calendar

units (e.g., days or seconds, per application granularity) are taken

(naively or for implementation convenience) to be time “points.”

Our approach to eliminating the undesirable anomalies admits

durations of infinitesimal extent as the lower and/or upper

bounds that may constrain two time points’ juxtaposition.

Following Dean and McDermott, we exhibit axioms for temporal

constraint propagation that generalize corresponding naïve

axioms by treating infinitesimals as orthogonal first-class

quantities and we appeal to complex number arithmetic

(supported by programming languages such as Lisp) for

straightforward implementation. The resulting anomaly-free

operation is critical to effective event calculus application in

commonsense understanding applications, like machine reading.

Index Terms—temporal knowledge representation and

reasoning, event calculus, temporal ontology best practices,

temporal constraint propagation

I. INTRODUCTION

Machine reading technology recently has been applied to
extract temporal knowledge from text. The event calculus [8]
presents appropriate near-term targets for formal statements
about events, time-varying properties (i.e., fluents), and time
points and intervals. While at least one implemented event
calculus-based temporal logic [2] also has included calendar
dates and clock times, most classical event calculus treatments
address real-world time only abstractly. None so far has
adopted the carefully crafted formulation of points (instants),
intervals, dates, and times in Hobbs’ and Pan’s RDF temporal
ontology [4]—which correctly treats all time units as intervals.
We say, “correctly,” because the casual treatment of a calendar
or clock unit as a time point unavoidably leads to undesirable
anomalies. This point may be subtle—ISO standard 8601 [3]
pertaining to representation of dates and times states, “On a

time scale consisting of successive steps, two distinct instants
may be expressed by the same time point,” and also
(unfortunately, apparently circularly) defines an instant as a
“point on the time axis.” We hope, by demonstrating
anomalies resulting from incorrect time point treatment and by
presenting effective correct implementation techniques, to
motivate future best-practice event calculus-based applications.

II. EVENT CALCULUS ONTOLOGY AND AXIOMS

We have implemented a temporal reasoning engine for an
event calculus variant including the following ontological
elements.

• Time intervals are convex collections of time points—
intuitively, unbroken segments along a time axis.

• The ontological status of time points is an issue
contended here. We argue that in the best practice they
are taken to be instants with no real-world temporal
extent, while naïvely (we argue incorrectly) finest
anticipated calendar or clock units—which actually are
intervals—have been taken as time “points.” We take
a time point to be a degenerate time interval—one
whose beginning and ending points both are the time
point itself.

• Fluents are statements representing time-varying
properties—e.g., the number of living children a
person has.

• The events of interest occur at individual time points
and may cause one or more fluents to change truth
value. E.g., the event of adopting an only child will
cause the fluent hasChildren(Person, 0) to become
false and the fluent hasChildren(Person, 1) to become
true.

Figure 1 exhibits axioms defining the predicates we use to
say when fluents “hold” (are true) and when events “occur”
(happen).

holdsThroughout(fluent, interval) ↔ ∀(point): pointInInterval(point, interval) → holdsAt(fluent, point)
holdsThroughout(fluent, interval) ↔ ∀(sub): hasSubInterval(interval, sub) ˄ holdsThroughout(fluent, sub)

holdsAt(fluent, point) ↔ ∃(interval): intervalIsPoint(interval, point) ˄ holdsThroughout(fluent, interval)

holdsWithin(fluent, interval) ↔ ∃(sub): hasSubInterval(interval, sub) ˄ holdsThroughout(fluent, sub)

occursWithin(event, interval) ↔ ∃(point): pointInInterval(point, interval) ˄ occursAt(event, point)

Figure 1. Axioms relating holds and occurs predicates. Variables appearing on the left-hand side of an initial implication are

universally quantified. Variables introduced on the right-hand side are quantified as indicated. The predicates relating time

points and intervals are defined in the appendix.

Informally, a fluent holds throughout an interval I iff it
holds at every point and throughout every subinterval contained
by I. It holds (or occurs) within I iff it holds (or occurs) within
some subinterval (or point) contained by I.

In the naïve approach, it’s perfectly acceptable to assert that
a fluent holds or that an event occurs “at” a specific “point” on
the calendar or clock. We believe that under the preferred
approach, in which the only (true) points directly accessible
delimit the boundaries of measured time units, such assertions
(or even queries) should be rare—perhaps limited to issues of
legal status (e.g., one reaches the age of majority at exactly
12:00 midnight on one’s 21st birthday). Thus, we commend
preferred use of holdsWithin and occursWithin to replace naïve
use of holdsAt and occursAt.

Besides being correct, the preferred approach is also more
robust. In the naïve approach, supposing an enterprise decides
to enhance its represented granularity from days to hours, it
will need to replace all existing occurrences of holdsAt with
holdsWithin (because its working definition of a “point” will
have changed). As such, naïve approach users might as well
avoid holdsAt and just use holdsWithin, which has equivalent
semantics when its interval argument is a time point.

A given event calculus application also will include axioms
to indicate which transition events initiate or terminate which
fluents, as summarized by Schrag [7]. We don’t need that
much detail here, however, to demonstrate our concerns about
undesirable anomalies arising from the naïve approach.

III. ANOMALIES ARISING FROM THE NAÏVE TIME POINT

APPROACH

We discuss the following anomalies.

A. Inability to order time points within a finest
represented time unit (e.g., a calendar day—see
section A)

B. Inability to avoid inferred logical contradiction
when contradictory statements hold at different
real-world times within a finest represented time
unit (see section B)

C. Inability to order real-world events occurring
within a finest represented time unit (see section
C)

D. Inability to avoid inferred logical contradiction
when real-world events occur within a finest
represented time unit and initiate contradictory
fluents (see section D)

The time map in Figure 2 illustrates these anomalies, as
discussed in the following subsections.

12:00 AM

hasMaritalStatus(John, Married)

11:59 PMA B

hasMaritalStatus(John, Married)

hasMaritalStatus(John, Unmarried)

DivorceEvent(John, Sally) MarriageEvent(John, Mary)

,
,

Figure 2. Time map illustrating naïve approach anomalies. Fluent observations (top) include fluents and the intervals

throughout which they hold. Dark-filled points indicate that associated fluents are known not to hold beyond their intervals’

beginning or ending. Constraint graphics (with arrows) are defined in Figure 9, in the appendix. Transition event occurrences

(middle) include the events and points where these occur. Contradictory fluents cannot overlap temporally, and, per event

calculus convention, initiated fluent observations begin immediately after triggering transition events. The calendar (bottom)

shows the initial and final minutes of a given day, plus two included time points, ordered as shown.

A. Inability to order time points

As is apparent in Figure 2, this basic problem underlies the
other three listed above. In the naïve approach, the only way to
order time points is to associate them with distinct finest
calendar or clock units. Suppose days are the finest time unit
represented. We’d like to assert the point-wise temporal
relations (i.e., constraints) Figure 2 indicates, but in the naïve
approach such constraints would be contradictory—all the
points shown would resolve to the same calendar day’s time
“point,” which cannot precede itself. This anomaly can be
particularly troubling in the representation of statements
extracted by machine reading from news articles, which
frequently exhibit only calendar dates but cover sequences of
events occurring within single days. The option of discarding
such fine ordering information—and treating all within-day
events as if they were simultaneous—is equally problematic.
Rendering event orderings correctly is critical to representing
causality—just one fundamental element of a true
commonsense understanding that machine reading is hoped
ultimately to support.

Even when our representation isn’t fine enough to specify
absolutely when during a given day (e.g.) a time point occurs,
when we can order the points, we can avoid contradictions
resulting from an incorrect presumption of simultaneity.
Absent total (or even partial) ordering, we also can still
hypothesize orders that might not lead to contradictions.

B. Inability to order contradictory holds statements

A person can’t be both married and unmarried at the same
time, as would be required if all the constraint-linked points in
Figure 2 were collapsed onto a single day “point.” In the naïve
approach, it is (from a real-world perspective) as if we forced
every marriage or divorce (indeed, every event) to occur at the
stroke of midnight.

C. Inability to order events

In the naïve approach, we can say that a person divorced
one spouse and married another on the same day, but we can’t
say in what order these events occurred.

D. Inability to order occurs statements initiating contradictory

fluents

Without the ability to order events, we don’t know whether
any axiom proscribing polygamy has been violated or not. An
implementation might take one position or another, depending
on the order in which it happened to visit the transition events
and to apply its rules for initiating and terminating fluents,
detecting contradictions, and propagating constraints.

IV. TEMPORAL CONSTRAINT REPRESENTATION AND

PROPAGATION

Compared to an application’s finest represented calendar or
clock unit, available real-world information may be more or
less precise. E.g., we may know the year that a given event
occurred but not the month or the day. If our finest represented
units are days, this gives us an earliest and a latest possible date
on which the event could have occurred (the first and last days
of the year given). We use the notation distance(a, b, [x, y]) to
indicate that the number of finest time units along a path from
time point a to time point b has as a lower bound x and as an
upper bound y.

Rather than expose our system-internal time units, we
provide a user interface in terms of calendar and clock units—
affording users source code-level robustness against future
granularity enhancements. A distinguished calendar/clock
point (e.g., the beginning point of the interval for 12:00
midnight, January 1, 1900) affords a reference against which
the distance to other dates/times is calculated.

We refer to an asserted distance statement (or to a user-
provided statement from which it is derived) as a temporal
constraint.

Real-world information also may give us only qualitative
information about the relationship between two time points—
e.g., one is before or one is after the other. The following two
figures exhibit axioms to define qualitative relations among
time points—Figure 3 following the naïve approach, Figure 4
the preferred one. (See also Figure 9 in the appendix for
graphical definitions of these relations.) Notice that the only
difference between these two axiom sets is in their
representation of the smallest possible distance between any
two time points. In the naïve approach, it is one finest time
unit. In the preferred approach, it is arbitrarily small—taken to
be infinitesimal.

timePointEqualTo(a, b) ↔ distance(a, b, [0, 0])
timePointLessThan(a, b) ↔ distance(a, b, [1, ∞])
timePointGreaterThan(a, b) ↔ distance(a, b, [–∞, −1])
timePointGreaterThanOrEqualTo(a, b) ↔ distance(a, b, [0, ∞])
timePointLessThanOrEqualTo(a, b) ↔ distance(a, b, [–∞, 0])
hasNextTimePoint(a, b) ↔ distance(a, b, [1, 1])
hasPreviousTimePoint(a, b) ↔ distance(a, b, [−1, −1])
timePointTouching(a, b) ↔ distance(a, b, [−1, 1])
timePointGreaterThanOrTouching(a, b) ↔ distance(a, b, [−1, ∞])
timePointLessThanOrTouching(a, b) ↔ distance(a, b, [–∞, 1])

Figure 3. Axioms defining qualitative relations between time points in the naïve approach, where finest time units are treated as

“points” and the smallest possible distance is one such time unit

timePointEqualTo(a, b) ↔ distance(a, b, [0, 0])
timePointLessThan(a, b) ↔ distance(a, b, [ϵ, ∞])
timePointGreaterThan(a, b) ↔ distance(a, b, [–∞, −ϵ])
timePointGreaterThanOrEqualTo(a, b) ↔ distance(a, b, [0, ∞])
timePointLessThanOrEqualTo(a, b) ↔ distance(a, b, [–∞, 0])
hasNextTimePoint(a, b) ↔ distance(a, b, [ϵ, ϵ])
hasPreviousTimePoint(a, b) ↔ distance(a, b, [−ϵ, −ϵ])
timePointTouching(a, b) ↔ distance(a, b, [−ϵ, ϵ])
timePointGreaterThanOrTouching(a, b) ↔ distance(a, b, [−ϵ, ∞])
timePointLessThanOrTouching(a, b) ↔ distance(a, b, [–∞, ϵ])

Figure 4. Axioms defining qualitative relations between time points in the preferred approach, where all time units are treated as

intervals and we use an infinitesimal (denoted ϵ) to separate points that are (in the limit) “adjacent”

Both approaches use infinity (denoted ∞) to represent the
largest possible distance between time points. Handling this in
temporal constraint propagation (computing tightest distance
bounds, considering all constraints) requires axioms defining
non-standard arithmetic, as in Figure 5. Figure 6 exhibits
axioms for the constraint propagation process in which Figure
5’s arithmetic axioms are applied. Note that all but the last of
Figure 5’s axioms handle only the infinities specially. By
treating the positive infinitesimal denoted ϵ as the imaginary
number i (as in [2][5][6]) and by appealing to complex
arithmetic, we can use the same axioms to support propagation
in both approaches.

Note that in the naïve approach using only real numbers all
the imaginary parts will be zero. The only substantive

difference between the two approaches’ computational
complexity for constraint propagation is that the preferred
approach enables finer (and thus more numerous unique)
constraints.

Implementation is straightforward for addition and
arithmetic negation in a programming language such as Lisp
that supports complex numbers and arithmetic. While complex
numbers with unequal real and/or imaginary parts are
incomparable with respect to magnitude, in our imaginary-as-
infinitesimal interpretation the real parts always dominate and
the imaginary parts are compared only when the real parts are
equal—per the last axiom defining finite>, in which the
predicates real>, real=, and imaginary> invoke the indicated
comparisons on the real and imaginary parts of their arguments.

infinite(–∞)
infinite(∞)

infinite+(–∞, –∞, –∞)
infinite+(∞, ∞, ∞)
infinite+(a, –∞, –∞) ← ¬infinite(a)
infinite+(–∞, b, –∞) ←¬infinite(b)
infinite+(a, ∞, ∞)← ¬infinite(a)
infinite+(∞, b, ∞) ← ¬infinite(b)
infinite+(a, b, a + b) ← ¬infinite(a) ˄ ¬infinite(b)

infinite–(–∞, ∞)
infinite–(∞, –∞)
infinite–(a, –a) ← ¬infinite(a)

infinite>(∞, –∞)
infinite>(a, –∞) ← ¬infinite(a)
infinite>(∞, b) ← ¬infinite(b)
infinite>(a, b) ← ¬infinite(a) ˄ ¬infinite(b) ˄ finite>(a, b)

finite>(a, b) ← real>(a, b) ˅ (real=(a, b) ˄ imaginary>(a, b))

Figure 5. Axioms supporting constraint propagation arithmetic (addition, subtraction, and comparison) over temporal duration

bounds of infinite extent

distance(b, a, [–y, –x]) ↔ distance(a, b, [x, y]) ˄ infinite–(x, –x) ˄ infinite–(y, –y)
distance(a, b, [w, y]) ← distance(a, b, [x, y]) ˄ distance(a, b, [w, z]) ˄ infinite>(w, x)
distance(a, b, [x, z]) ← distance(a, b, [x, y]) ˄ distance(a, b, [w, z]) ˄ infinite>(y, z)
distance(a, c, [mo, np]) ← distance(a, b, [m, n]) ˄ distance(b, c, [o, p]) ˄ infinite+(m, o, mo) ˄ infinite+(n, p, np)

Figure 6. Axioms for propagating lower and upper temporal bounds to infer tightest bounds considering all constraints

Day 1 Day 2

[ϵ, ∞] [ϵ, ∞] [ϵ, ∞]

[ϵ, 1–2ϵ] [ϵ, 1–2ϵ] [ϵ, 1–2ϵ]

[2ϵ, 1–ϵ]

[1, 1]

[5, 7]

[6, 8]

[6–2ϵ, 7+ϵ]

A B C

Figure 7. Raw (solid arrow) and inferred/propagated (dashed arrow) constraints, with lower and upper bounds, in the preferred

approach. Constraints have directions indicated by arrows (all oriented from left to right)

V. HOW THE PREFERRED APPROACH AVOIDS ANOMALIES

To see how constraint propagation works—and avoids
anomalies—in the preferred approach, see Figure 7, which
supposes days are our finest time unit.

By way of raw constraints, we know that points A and B
both fall between Day 1 and Day 2, that A follows B, and that
point C is between five and seven days after Day 2. For clarity,
Figure 7 omits the [ϵ, ∞] constraint from Day 1 to B and from

A to Day 2, as well as many inferred constraints relating pairs
of points not connected in the figure. The two-dimensional (in
the implementation, complex) arithmetic treating infinitesimal
and non-infinitesimal quantities orthogonally effectively
maintains qualitative point ordering—both within finest
represented calendar or clock unit boundaries (e.g., relating
points A and B) and across them (relating B and C). See
Figure 8.

ϵ ϵ 1–2ϵ [5, 7]

[6–2ϵ, 8–2ϵ]

Day 1 Day 2B CA

Day 1 Day 2

ϵ 1–2ϵ ϵ [5, 7]

[5+ϵ, 7+ϵ]

A B C

1–2ϵ ϵ [5, 7]

[5+ϵ, 7+ϵ]

ϵ

Day 1 Day 2A B C

Figure 8. Extreme cases for the time points A and B in Figure 7, including (at the extremes) greatest lower and least upper

bounds in the inferred constraints shown there

As we explained in section III, resolving this time point
ordering anomaly simultaneously resolves the other three
anomalies described there as well. Now, we also can order the
events that occur at time points and avoid spurious
contradictions that arise from the naïve approach’s inability to
order events and fluent observations. When our finest time
units are days, we no longer have to pretend that all events
occur at the stroke of midnight. With appropriate ordering of
events, we’ll be able to put machine reading in a better position
to support commonsense understanding of causality.

VI. SUMMARY

We have demonstrated temporal reasoning anomalies that
arise when implementation of the event calculus naively
follows classical treatments that casually treat finest
represented calendar or clock time intervals as “points.” We
have presented axioms and described implementation
techniques to resolve these anomalies when all time intervals
are correctly treated as time intervals and when time points are
taken to be instants with zero real-world duration extent. We
argue that this preferred approach, rather than the naïve one, is
needed for the event calculus to be useful in applications, like
machine reading, intended to support commonsense
understanding including causality.

ACKNOWLEDGMENT

Thanks to other participants in DARPA’s Machine Reading
research program that supported our temporal reasoning
implementation—especially to other members of the SAIC
evaluation team, including Global InfoTek (the author’s former
employer).

REFERENCES

[1] J. Allen, “Maintaining knowledge about temporal intervals,” in
Communications of the ACM. 26, pp. 832–843, November 1983.

[2] T. Dean and D. McDermott, “Temporal data base management,”
Artificial Intelligence, vol. 32, pp. 1–55, 1987.

[3] International Standards Organization, “Data elements and
interchange formats—information interchange—representation of
dates and times,” international standard ISO 8601:2004(E), third
edition, 2004.

[4] J. Hobbs and F. Pan, “An ontology of time for the semantic web,”
ACM Transactions on Asian Language Information Processing,
Vol. 3, No. 1, pp. 66–85, March 2004.

[5] R. Schrag, J. Carciofini, and M. Boddy, “Beta-TMM Manual
(version b19),” Technical Report CS-R92-012, Honeywell SRC,
1992.

[6] R. Schrag, M. Boddy, and J. Carciofini. “Managing disjunction
for practical temporal reasoning,” in Principles of Knowledge
Representation and Reasoning: Proceedings of the Third
International Conference (KR-92), pp 36–46, 1992.

[7] R. Schrag, “Exploiting inference to improve temporal RDF
annotations and queries for machine reading,” 7th International
Conference on Semantic Technologies for Intelligence, Defense,
and Security (STIDS), 2012.

[8] M. Shanahan, “The event calculus explained,” in Artificial
Intelligence Today, ed. M. Wooldridge and M. Veloso, Springer
Lecture Notes in Artificial Intelligence no. 1600, pp.409–430,
1999.

APPENDIX: TIME POINT AND INTERVAL RELATIONS

The set of predicates illustrated in Figure 9 (repeated from
Figure 4) supports every qualitative binary time point relation
over the time point distance landmark values indicating
equality, adjacency, and lack of constraint above or below. (A
user also may specify arbitrary bounds on the number of time
units intervening between any two points.) As illustrated in
Figure 10 selected examples, this point orientation yields a
much broader set of qualitative interval relations than does
Allen’s classical formalism [1], which is purely interval
oriented, without points.

[0, 0]

[ϵ, ∞]

[−∞, −ϵ]

[0, ∞]

[−∞, 0]

[ϵ, ϵ]

[−ϵ, −ϵ]

[−ϵ, ϵ]

[−ϵ, ∞]

[−∞, ϵ]

marked

time points are

consecutive.

timePointEqualTo(S,O)

timePointLessThan(S,O)

timePointGreaterThan(S,O)

timePointLessThanOrEqualTo(S,O)

timePointGreaterThanOrEqualTo(S,O)

hasNextTimePoint(S,O)

hasPreviousTimePoint(S,O)

timePointTouches(S,O)

timePointLessThanOrTouching

timePointGreaterThanOrTouching

pointInInterval

pointIsInterval

Subject on top
Object on bottom

marked

time points may

not coincide.

,

‘ ∞ = Infinite

duration

[lower, upper] bounds on the calendar or clock distance (in the
preferred approach) from time point S to time point O

‘

‘

‘

‘

,

ϵ = Infinitesimal

duration

Figure 9. Qualitative relations over time points, with graphical icons that we use to illustrate the definitions of point-and-interval

relations (here) and interval-interval relations (in Figure 10). Such illustrated definitions include beginning and ending points

super-imposed on interval icons, to elucidate the constraints.

timeIntervalBefore(S,O)

timeIntervalFinishedBy(S,O)

timeIntervalOverlaps(S,O)

timeIntervalIntersects(S,O)

,

‘

‘

‘

‘

hasSubTimeInterval(S,O)

timeIntervalStarts-X(S,O)

timeIntervalMeets-X(S,O)

timeIntervalEquals(S,O)

timeIntervalTouches(S,O)

Figure 10. Selected relations over time intervals (with defined time point relations indicated)

