
CycQL: A SPARQL Adapter for OpenCyc

Steve Battle

Sysemia Ltd, Bristol & Bath Science Park,
Dirac Crescent, Emerson’s Green, Bristol BS16 7FR, UK

steve.battle@sysemia.co.uk,
WWW home page: http://www.sysemia.co.uk

Abstract. CycQL is an Apache Jena/ARQ based SPARQL adapter
for OpenCyc 4.0. It enables the Cyc inference engine to be used with
Semantic Web tools via a SPARQL endpoint. Cyc achieves scalability
and optimizes inference by restricting the search space to a relevant
subset of microtheories. With this adapter, Cyc microtheories are
identified with RDF named graphs. This paper demonstrates how
greater efficiency is achieved by maximizing the chunks of SPARQL
algebra that are translated into CycL.

Keywords: Cyc, OpenCyc, CycL, Jena, RDF, SPARQL

1 Introduction

Cyc [1] was one of the first Artificial Intelligence systems to develop an
ontological approach to organizing knowledge. The modularity this affords
enables Cyc to reason scalably in highly complex domains. OpenCyc 4.0,
released in June 2012, includes the full Cyc ontology. However, Cyc is often
overlooked as a reasoner on the web because of a lack of integration points
with other semantic technologies. The full opencyc ontology is available as a
downloadable OWL (Web Ontology Language) file, and individual concepts
may be downloaded in RDF from the OpenCyc website. In addition, UMBEL
[2] identifies a subset of OpenCyc which can be used as an upper ontology for
the purpose of ontology alignment.
This paper describes the development of a SPARQL adapter for OpenCyc,
known as CycQL [3], which enables a Cyc instance to support a SPARQL
endpoint. The ARQ SPARQL evaluator is an extensible framework for
implementing SPARQL adapters. ARQ parses the query into SPARQL algebra;
a tree structure representing query operators and triple or quad patterns. A
query evaluation walks this algebra and combines the resulting bindings to
produce the final result set.
The CycQL adapter comprises a number of components. Firstly, a wrapper for
the CycAccess object implements the Jena/ARQ DatasetGraph, providing an
RDF graph representation of the Cyc knowledge base. Secondly, each step of
query evaluation is routed through a custom OpExecutor that determines
whether a given operator in the SPARQL abstract syntax tree can be compiled
directly into CycL, or should be executed as usual by ARQ. Thirdly, SPARQL

operators and patterns to be compiled into CycL are routed by the
OpExecutor to a custom StageGenerator that generates bindings for a given
stage in the SPARQL algebra. This paper explores the compilation of ever
larger stages of the query to create a more efficient adapter.

2 Mapping CycL to RDF

The CycL representation is a predicate-calculus like language that allows us to
assert facts about the world, and to express queries over those facts. A CycL
expression is a bracketed list with the predicate at the head of that list. It may
contain constants, prefixed with #$. For example, the fact that Pluto orbits the
Sun could be stated as follows.

(#$orbits #$PlanetPluto #$TheSun)

Translating this binary expression into RDF (Resource Description
Framework) [4] involves transposing the order of the terms to give the typical
subject, predicate, object arrangement. It also involves assigning URIs to the
Cyc constants. In this work, the CycAccess object provided by OpenCyc is
wrapped as an Apache Jena/ARQ DatasetGraph supporting a graph
representation of an RDF Dataset. A URI base can be set on this wrapper
which is simply prepended to the constant value to generate a URI. For
example, the base may be set to the OpenCyc namespace
<http://sw.opencyc.org/2012/05/10/concept/en/>, which may be used for
English language versions of concepts. Alternatively, the OpenCyc corpus may
supply an rdfURI property and in these cases this supplied URI is used in
preference to the generated URI. The above assertion may be written (in RDF
Turtle) as follows, with all URIs relativized to the document base.

@base <http://sw.opencyc.org/2012/05/10/concept/en/> .

<PlanetPluto> <orbits> <TheSun> .

Type information is asserted in CycL with the #$isa predicate, which maps
directly to rdf:type. Following Pluto’s demotion to a dwarf-planet in 2006, we
may make the following assertion.

(#$isa #$PlanetPluto #$DwarfPlanet)

Using Turtle short-hand for rdf:type, the above may be written as follows,
again with individuals expressed as document relative URIs (assuming that the
@base is set as above).

<PlanetPluto> a <DwarfPlanet> .

The constant #$PlanetPluto is described as being atomic, as it has no internal
structure, simply properties that are extrinsic to that atomic concept.
Non-Atomic Terms (NATs) are expressed as lists and do not have a truth value
as such, but can be used within expressions. These may be used to express

functional relationships between objects. Non-Atomic Terms can also be used
to express qualifying information about a value, such as its type. For example,
the orbital period of Pluto can be expressed as a number qualified by the units
it is measured in.

(#$orbitalPeriod #$PlanetPluto (#$DaysDuration 90739))

Such unary, un-nested NATs map nicely to RDF custom datatypes. The above
may be expressed in Turtle as follows.

<PlanetPluto> <orbitalPeriod> "90739"^^<DaysDuration> .

CycL is able to form complex logical expressions using the truth functions
(#$and, #$or, #$not, #$implies). Pluto has five known moons, and If we are
to believe recent online polls, the recently discovered moons, P4 (2011) and P5
(2012), are to be named ’Vulcan’ and ’Cerberus’. This knowledge can be
asserted in CycL as a logical conjunction.

(#$and

(#$orbits #$Charon-MoonOfPluto #$PlanetPluto)

(#$orbits #$Nix-MoonOfPluto #$PlanetPluto)

(#$orbits #$Hydra-MoonOfPluto #$PlanetPluto)

(#$orbits #$Vulcan-MoonOfPluto #$PlanetPluto)

(#$orbits #$Cerberus-MoonOfPluto #$PlanetPluto))

In RDF it is straightforward to represent a conjunction of triples such as these,
but we cannot directly represent disjunction, negation, or implication. This
highlights the utility of using highly expressive languages such as CycL
alongside RDF. We see later on how this expressiveness enables us to define
CycL rules that may be used in conjunction with a SPARQL query.

2.1 Limitations of the mapping

The mapping currently supports Non-Atomic Terms that are functions of
literal values. The mapping does not currently support NATs that are
functions of a constant. In such cases the function name typically ends with
‘Fn’. For example, we could talk about the moons of Pluto using the following
CycL NAT.

(#$MoonFn #$PlanetPluto)

This doesn’t assert anything by itself but could be used within an assertion
such as the following.

(#$isa #$Charon-MoonOfPluto (#$MoonFn #$PlanetPluto))

As long as the function is unary, it can be expressed in RDF as a pair of
triples, where moonofpluto is a so-called blank node; the object of a functional
relationship MoonFn. The result is known as a Non-Atomic Reified Term and
may be represented in RDF as follows.

<PlanetPluto> <MoonFn> _:moonofpluto .

<Charon-MoonOfPluto> a _:moonofpluto .

One of the advantages of CycL is that it can express n-ary relationships.
Rather than consider complex mappings of n-ary (for n > 2) expressions into
RDF, these are instead invisible to the RDF mapping. It is assumed that Cyc
inferencing may be used to unpack any such expression to generate the
equivalent form in terms of binary predicates, if required. This can be done on
demand; effectively defining a magic (or computed) property.
An example of this, which will be explained later on, is the use of an
orbitalRadius property of a planet which should be computed (on demand),
but we can treat as though it were asserted as a simple relationship.

<PlanetPluto> <orbitalPeriod> "90739"^^<DaysDuration> .

3 Mapping SPARQL to CycL queries

SPARQL (SPARQL Protocol and RDF Query Language) [5] is a widely used
query language for RDF datasets. The following SPARQL query selects for
dwarf planets orbiting the Sun together with their moons, if any. The results
are shown below.

PREFIX : <>

SELECT ?planet ?moon

WHERE {

?planet a :DwarfPlanet ; :orbits :TheSun

OPTIONAL { ?moon :orbits ?planet }

}

--

| planet | moon |

==

| :PlanetPluto | :Charon-MoonOfPluto |

| :PlanetPluto | :Nix-MoonOfPluto |

| :PlanetPluto | :Hydra-MoonOfPluto |

| :PlanetPluto | :Vulcan-MoonOfPluto |

| :PlanetPluto | :Cerberus-MoonOfPluto |

--

The query above contains a number of triple patterns that can be translated
into CycL as were the basic axioms of our planetary system. As in SPARQL,
CycL represents variables by prefixing them with a ’?’. The three triple
patterns that appear above may therefore be individually translated into CycL
as follows.

(#$isa ?PLANET #$DwarfPlanet)

(#$orbits ?PLANET #$TheSun)

(#$orbits ?MOON ?PLANET)

3.1 Microtheories as graphs

The Cyc knowledge-base is divided into a number of microtheories, each of
which corresponds to a particular domain of knowledge. Cyc’s knowledge of the
planets is mostly held in UniverseDataMt. Microtheories are hierarchically
arranged so that facts from any one microtheory can be inherited by more
specialized microtheories. Microtheories are identified by a constant
(microtheory names typically include ‘Mt’), so they can be treated like any
other individual and be assigned a URI.
Each access to the Cyc knowledge base must define a specific microtheory.
SPARQL defines a default graph against which Basic Graph Patterns (BGPs),
the sets of triples that appear in a query, are matched. The initial setting for
this default graph is set in the DatasetGraph, but can be overriden with the
addition of a FROM clause in the query. The query below explicitly defines a
microtheory to be used as the new default graph.

PREFIX : <>

SELECT ?planet

FROM :CurrentWorldDataCollectorMt-NonHomocentric

WHERE {

?planet a :Planet ; :orbits :TheSun

}

Alternatively, to allow knowledge to be integrated from multiple sources graphs
may be explicitly named within the body of the query using the GRAPH clause.
Knowledge about dwarf planets appears in a a more general microtheory than
planets and their orbits, so it can be more efficient to target specific parts of
the query at specific microtheories as in the example below.

PREFIX : <>

SELECT ?planet

FROM :CurrentWorldDataCollectorMt-NonHomocentric

FROM NAMED :UniverseDataMt

WHERE {

?planet a :DwarfPlanet

GRAPH :UniverseDataMt {

?planet :orbits :TheSun

}

}

3.2 Negation

Negation is not available in the RDF representation, though it is available as a
feature in SPARQL query. While the query at the beginning of this section
selects for dwarf planets, this time we wish to filter them out using the
SPARQL 1.1 NOT EXISTS clause.

PREFIX nat: <java:org.opencyc.sparql.function.nat.>

PREFIX : <>

SELECT ?planet ?orbital_period

FROM :CurrentWorldDataCollectorMt-NonHomocentric

WHERE {

?planet a :Planet ;

:orbits :TheSun ; :orbitalPeriod ?orbital_period

FILTER (NOT EXISTS { ?planet a :DwarfPlanet })

}

ORDER BY nat:Integer(?orbital_period)

In this example, we make use of Johannes Kepler’s observation that the
distance of a planet from the Sun is proportional to its orbital period. More on
this later, but for now this knowledge can be used to define a natural ordering
over the planets as seen in the results below.

| planet | orbital_period |

===

| :PlanetMercury | "88"^^:DaysDuration |

| :PlanetVenus | "225"^^:DaysDuration |

| :PlanetEarth | "365"^^:DaysDuration |

| :PlanetMars | "687"^^:DaysDuration |

| :PlanetJupiter | "4329"^^:DaysDuration |

| :PlanetSaturn | "10753"^^:DaysDuration |

| :PlanetUranus | "30660"^^:DaysDuration |

| :PlanetNeptune | "60152"^^:DaysDuration |

We see the Non-Atomic Term representing the orbital period in the output but
the application of the function nat:Integer has yet to be explained. As these
NATs are not numbers, any attempt to ORDER BY the term directly would be
based on the order of their lexical value alone. The first character would be the
most significant and would have the undesirable effect of placing Mercury at
the outer edge of the solar system. The application of a custom java function in
the nat namespace casts this lexical value to the indicated type, in this case an
(XSD) Integer.

3.3 CycL Compilation levels

Apache Jena/ARQ defines a StageGenerator interface for executing triple
patterns, quad patterns and other algebraic operations and returns a binding
iterator. These patterns and operators are compiled into a CycL query to be
evaluated by Cyc.
There are three natural levels at which one may group content from the
original query for translation into CycL. These levels are enumerated below,
each building on, and having greater efficiency than, the previous level.

The negation query of the previous subsection will be used to demonstrate this
compilation into CycL at different levels of grouping, with each level offering
greater efficiency. These efficiencies are gained by reducing the depth of the
search tree from a depth of 4 using the triple-pattern level, down to 1 with the
operator-composition level.

triple-pattern level At the simplest level, a query can be decomposed into
individual triple-patterns. The four steps below represent a single branch of the
search tree (of depth 4), with ?PLANET bound in step 1 to #$PlanetEarth.

1. (#$isa ?PLANET #$Planet)

2. (#$orbits #$PlanetEarth #$TheSun)

3. (#$orbitalPeriod #$PlanetEarth ?ORBITAL-PERIOD)

4. (#$isa #$PlanetEarth #$DwarfPlanet)

Note that, in this case, the evaluation of NOT EXISTS takes place in the
SPARQL engine rather than Cyc. If the final query returns no results then it
succeeds.

graph-pattern level SPARQL queries include blocks of triples that are
known as Basic Graph Patterns (BGPs), or where named graphs are
introduced, as Named Graph Patterns (NGPs). A pattern containing multiple
triples may be translated by the StageGenerator into a single logical
conjunction to be evaluated by Cyc in a single step. The depth of the search
tree is thereby reduced to 2.

1. (#$and

(#$isa ?PLANET #$Planet)

(#$orbits ?PLANET #$TheSun)

(#$orbitalPeriod ?PLANET ?ORBITAL-PERIOD))

2. (#$isa #$PlanetEarth #$DwarfPlanet)

As above, the evaluation of NOT EXISTS takes place in the SPARQL engine.

operator-composition level Each step of query evaluation is routed through
an OpExecutor that evaluates graph patterns, filters, sequences and joins. The
OpExecutor composes the largest units of the SPARQL algebra that make
sense as a single CycL query. The composed units are then routed to the
StageGenerator to generate result bindings. The depth of this search is just 1.

1. (#$and

(#$isa ?PLANET #$Planet)

(#$not (#$isa ?PLANET #$DwarfPlanet))

(#$orbits ?PLANET #$TheSun)

(#$orbitalPeriod ?PLANET ?ORBITAL-PERIOD))

Note that in this case, Cyc evaluates the negation directly using #$not.

4 Functions

We wish to compute which planets lie in the Circumstellar Habitable Zone
(CHZ). This is the famous ’Goldilocks zone’ containing the Earth and Mars,
defined to be between 0.725 and 3 Astronomical Units from the Sun.
Cyc defines a number of functions, which can be expressed as CycL
Non-Atomic Terms. These functions are non-reifiable, meaning that they do
not represent individuals in their own right, but are instead intended to be
evaluated. We will make use of the mathematical functions, #$ExponentFn and
#$QuotientFn. In the first instance we show how these functions can be
surfaced within an Apache Jena/ARQ LET statement. This binds the variable
on the left-hand side to the value of the expression on the right-hand side. The
cyc namespace is introduced as a way to identify Cyc functions. Access to Cyc
functions is provided by registering them with an ARQ function registry. Given
the function URI, the function factory queries Cyc for the arity and return
type of the function. In this case the return type is a double, so this value
(?AU) may be used directly in the ORDER BY clause.
Kepler’s third law states that ”The square of the orbital period of a planet is
directly proportional to the cube of the semi-major axis of its orbit,” P 2 = R3,
where P is expressed in years, and R in Astronomical Units (AUs).

PREFIX cyc: <http://www.opencyc.org#>

PREFIX nat: <java:org.opencyc.sparql.function.nat.>

PREFIX : <>

SELECT ?planet ?AUs

FROM :UniverseDataMt

WHERE {

?planet a :Planet ;

:orbits :TheSun ; :orbitalPeriod ?orbital_period

LET (?AU := cyc:ExponentFn(

cyc:QuotientFn(nat:Double(?orbital_period),365),

cyc:QuotientFn(2,3)))

FILTER (0.725 < ?AU && ?AU < 3.0)

} ORDER BY ?AU

This query is translated into the CycL below, with only the remaining ORDER
BY clause being evaluated by the SPARQL adapter. Note the introduction of
the equality to extract the lexical value (?VAR1) of the orbital period NAT
(??VAR0 binds to the name of the NAT). The results follow.

(#$and

(#$isa ?PLANET #$Planet)

(#$orbits ?PLANET #$TheSun)

(#$orbitalPeriod ?PLANET ?ORBITAL-PERIOD)

(#$equals ?ORBITAL-PERIOD (??VAR0 ?VAR1))

(#$evaluate ?AU (#$ExponentFn (#$QuotientFn ?VAR1 365) (#$QuotientFn 2 3)))

(#$lessThan 0.725 ?AU)(#$lessThan ?AU 3.0))

| planet | AU |

===

| :PlanetEarth | "1.0"^^xsd:double |

| :PlanetMars | "1.5244361831950344"^^xsd:double |

5 Rules

Although the approach described in the previous section returns the correct
results, it complicates matters with the unnecessary inclusion of Kepler’s law
within the body of the query itself.

In this section we will develop a CycL rule to perform a simple
backward-chaining inference triggered by a SPARQL query. Cyc may, of
course, perform other kinds of inference such as forward chaining, triggered
opportunistically by the initial assertion of the axioms. At this point it may, for
example, perform type closure over #$isa relationships.

The aim is to use Cyc rules alongside SPARQL. These backward chaining rules
are only invoked at the time the query is made. Neither are they derived from
the query; they are native Cyc rules. While various schemes exist to implement
rules in SPARQL they tend to be forward chaining engines. One example of
this is the use of chained SPARQL CONSTRUCT queries as found in the SPARQL
Inferencing Notation (SPIN) [6].

We define Kepler’s law using a CycL rule as follows. The orbitalRadius is
inferred from the orbital period using Kepler’s 3rd law.

(#$implies

(#$and

(#$orbitalPeriod ?BODY (#$DaysDuration ?PERIOD))

(#$evaluate ?RADIUS

(#$ExponentFn (#$QuotientFn ?PERIOD 365)(#$QuotientFn 2 3))))

(#$orbitalRadius ?BODY (#$AstronomicalUnits ?RADIUS)))

The SPARQL query is simplified using the magic property, #$orbitalRadius.

PREFIX nat: <java:org.opencyc.sparql.function.nat.>

PREFIX : <>

SELECT ?planet ?orbital_radius

FROM :UniverseDataMt

WHERE {

?planet a :Planet ;

:orbits :TheSun ; :orbitalRadius ?orbital_radius

FILTER (0.725 < nat:Double(?orbital_radius) && nat:Double(?orbital_radius) < 3.0)

}

ORDER BY nat:Double(?orbital_radius)

The query above is translated into the CycL below using operator-composition
to combine the Basic Graph Pattern and the FILTER clause. When Cyc
evaluates the goal with the predicate #$orbitalRadius, it triggers the rule
above to compute the value.

(#$and

(#$isa ?PLANET #$Planet)

(#$orbits ?PLANET #$TheSun)

(#$orbitalRadius ?PLANET ?ORBITAL-RADIUS)

(#$equals ?ORBITAL-RADIUS (??VAR0 ?VAR1))

(#$lessThan 0.725 ?VAR1)

(#$lessThan ?VAR1 3))

6 Conclusion and next steps

CycQL is a useful addition to the tool-box available to users of OpenCyc. As a
proof-of-concept it demonstrates the efficiencies to be gained by compiling as
much as the query as possible into CycL before handing off to Cyc. The next
steps include refining the RDF mapping to support NARTs (Non-Atomic
Reified Terms), and to provide a more complete coverage of SPARQL. This
will include the addition of a describe-handler supporting SPARQL DESCRIBE

queries, and support for multiple FROM clauses in the SPARQL query.

References

1. Lenat, Douglas. B., Guha, R. V.: Building Large Knowledge-Based Systems:
Representation and Inference in the Cyc Project (1989)

2. Bergman, M.K., UMBEL: A Subject Concepts Reference Layer for the Web,
<http://www.slideshare.net/mkbergman/umbel-a-subject-concepts-reference-layer-for-the-web>

3. CycQL SPARQL adapter for OpenCyc,
<http://code.google.com/p/gloze/wiki/CycQL>.

4. Klyne, G., Carroll, J.J., Resource Description Framework (RDF): Concepts and
Abstract Syntax, W3C Recommendation, 10 February 2004,
<http://www.w3.org/TR/rdf-concepts/>.

5. Harris, S., Seaborne, A., SPARQL 1.1 Query Language: W3C Proposed
Recommendation, 08 November 2012,
<http://www.w3.org/TR/sparql11-query/>.

6. Knublauch, H., Hendler, J., Idehen, K., SPIN - Overview and Motivation, W3C
Member Submission 22 February 2011,
<http://www.w3.org/Submission/spin-overview/>.

