
Effective Datalog-like representation of procedural programs⋆

David Bednárek

Department of Software Engineering
Faculty of Mathematics and Physics, Charles University Prague

bednarek@ksi.mff.cuni.cz

Abstract. Database systems are constantly extending

their application area towards more general computing.

However, applications that combine database access and

general computing still suffer from the conceptual and tech-

nical gap between relational algebra and procedural pro-

gramming. In this paper, we show that procedural programs

may be effectively represented in a Datalog-like language

with functions and aggregates. Such a language may then

be used as a common representation for both relational and

procedural part of an application.

1 Introduction

As database systems were extending their application
area, their mainstay language, SQL, became no longer
sufficient to support all required applications of data-
bases. The database community reacted in two ways:
Implementing domain specific languages like XQuery,
SPARQL etc. and improving the interaction of data-
base engines with general procedural programming
languages. The second approach is certainly more gen-
eral but it is also more difficult due to deep differences
between the procedural and relational paradigms.

Many database systems offer a procedural lan-
guage with embedded SQL statements. The most com-
mon processing scenario is depicted at Fig. 1. The
procedural and relational parts are separated already
in the parser stage. The procedural part is converted
to a procedural intermediate representation while the
relational part is expressed using extended relational
algebra. The two parts are processed almost indepen-
dently in the following stages. When entering run time,
the procedural part is usually expressed by a procedu-
ral bytecode which is designed for easy interpretation;
the relational part is represented by a physical plan,
i.e. an expression over a physical algebra.

Database-related optimizations are performed only
on the relational side; individual SQL statements
extracted from the source code are usually optimized
independently. The most important optimization step
is the strategy of physical plan generation, tradition-
ally called cost-based optimization. Here, the logical
relational algebra operators are converted to physical

⋆ The work was supported by the GACR project
202/10/0761 and by the GAUK grant SVV-2011-
263312.

embedded-SQL

procedural

program

procedural

machine

plan generator

physical plan

query rewriting

procedural IR

plan

interpreter

physical

operator

code

library

physical

operator

metadata

library

relational

algebra

parser

code

optimization

bytecode

bytecode

generator

call interface

database

statistics

data

base

compile time

run time

JIT compiler

Fig. 1. Typical processing path of embedded-SQL pro-
grams

operators selected from a library and the selection is
guided by database statistics and physical operator
metadata (cost etc.).

The procedural part meets with its relational ele-
ments only at run time – the procedural machine ex-
ecutes the procedural code containing calls to a data-
base interface which in turn invokes the plan inter-
preter. The interpreter schedules and dispatches calls
to procedures implementing individual physical oper-
ators of a plan. Although the individual SQL state-
ments extracted from the source program often access
the same data, their plans usually interact only at the
lowest levels of physical data access; thus, they often
repeat the same operations on the same data.

10 David Bednárek

The most important reason for the separation of
procedural and relational parts is probably the his-
tory – the relational (SQL) query engines were usu-
ally implemented well before the procedural add-on
was considered and the software-engineering cost of
reimplementing the query engine was considered too
high.

Nevertheless, there is another reason for the sep-
aration – the nature of procedural code is so distant
from the algebraic nature of SQL that it is very dif-
ficult to create a meaningful common representation
for the two parts.

1.1 Goals

In this paper, we suggest using a Datalog-like language
as the common intermediate representation for proce-
dural and relational code. This idea is natural, consid-
ering the close relationship between Datalog and rela-
tional algebra on one side and the computing power
of logic programming and recursion on the other side.
However, there are still many obstacles in the inte-
gration effort. In particular, there is a risk of loss of
efficiency since the procedural code is not evaluated
directly but transformed to logic-programming repre-
sentation and then evaluated by a procedural hard-
ware.

In our approach, we strive to improve the efficiency
of logic-programming representation by minimizing
the size of the models – we show that a procedural code
can be encoded in a logic program in such a manner
that the size of the (minimal) model is proportional
to the execution time of the original program on the
same data. Thanks to this proportionality, the logic
program may be evaluated completely in bottom-up
manner.

Due to the focus on bottom-up evaluation, we pre-
fer calling our approach Datalog-like over the term
logic programming, although we certainly must use
a language stronger than Datalog to achieve gener-
ality.

Besides function symbols which are necessary to
simulate general procedural programming, our langua-
ge needs negation and aggregation for the emulation
of both procedural constructs and the embedded re-
lational language. Both negation and aggregation re-
quire special handling to ensure well-defined semantics
and there are several approaches to the semantics of
negation in Datalog and logic programming in general.

Thus, defining a particular approach to semantics
is a part of our effort – we reuse the concepts of lo-
cal stratification [13] and rule progressivity [10] that
together well reflect the nature of the original proce-
dural code.

1.2 Architecture

The architecture of the proposed system is shown at
Fig. 2. Instead of separating the procedural and re-
lational part, the parser converts the source code into
a Datalog-like intermediate representation. This inter-
mediate language and the conversion of procedural
code into it form the main subject of this paper. On
the other hand, conversion of relational queries to
Datalog is a well-known subject; thus, it is not neces-
sary to describe the handling of embedded SQL state-
ments.

The processing continues with rewriting step which
optimizes the Datalog-like representation – this phase
corresponds to query rewriting and it may also be in-
fluenced by database statistics. Moreover, several op-
timization algorithms known from compiler construc-
tion like loop unrolling or variable renaming [17] have
their equivalents in the transformation of logic pro-
grams, so this phase covers also the optimization of
procedural code.

The most important feature of this architecture is
the ability to apply rewriting optimization step across
the boundary between procedural and relational code.
For instance, repeated invocations of a SQL statement
may be glued together, offering, for instance, the pos-
sibility to cache their partial results.

The plan generator phase tries to cover the Data-
log-like representation using a predefined set of pat-
terns. Each pattern corresponds to a component which
has several inputs and several outputs, each corre-
sponding to a predicate. A simplest component cover
one Datalog rule – in this case, the head of the rule
corresponds to the output and each atom of the body
corresponds to an input of the component. More so-
phisticated components correspond to a pattern cov-
ering more than one rule, including recursively depen-
dent rules.

Some of the components correspond to physical
operators of a relational engine; for instance, a Data-
log rule with two body atoms may be implemented
by a hash-join operator. Other components are imple-
mented with simple procedural code snippets – these
components ensure that the procedural parts of the
source code are reverted back to procedural code. Of
course, parts of the source code may be changed during
the rewriting phase; consequently, procedural source
code may be eventually covered by relational operators
and, conversely, portions of the embedded relational
statements may be converted to procedural snippets.

The implementation of physical relational opera-
tors is boxed in procedural packages which are con-
nected together similarly to classical query plans. On
the other hand, the procedural snippets are so small
that individual packaging would be ineffective. There-

Effective Datalog-like representation . . . 11

fore, the snippets are combined together to larger pro-
cedural code fragments by the bytecode generator.

This paper deals with the design of the intermedi-
ate representation and the translation from procedu-
ral code to it. The subsequent steps – Datalog-based
rewriting and plan generator – are subject of our cur-
rent research. The run-time portion of the system at
Fig. 2 was already implemented for a SPARQL com-
piler [4] whose compile time used a relational interme-
diate code and an algebra-based plan generator.

embedded-SQL

procedural

program

procedural

machine

plan generator

component

tree

Datalog

rewriting

component

scheduler

physical

component

snippet

library physical

component

metadata

library

Datalog-like

intermediate

representation

parser

bytecode

bytecode

generator

access

interface

database

statistics

data

base

compile time

run time

JIT compiler

physical

component

code

library

Fig. 2. Proposed processing path of embedded-SQL pro-
grams.

The rest of the paper is organized as follows: In the
Section 2, we briefly review the related work on the
interaction between procedural and relational code as
well as Datalog-related definitions important for our
approach. The following section uses a sample pro-
cedural code to illustrate several approaches to the
modelling of procedural code in Datalog style. After
reviewing the required extensions to Datalog in Sec-
tion 3.5, a particular strategy to the minimization of
model size is presented in Section 3.6.

2 Background and related work

Interaction of procedural and relational code was re-
cognized as an important topic a long time ago; never-
theless, practical applications of the results are very
scarce. In [7], a successful optimization of the interac-
tion cost was shown in the case of calling procedurally-
implemented functions from relational queries. Our
approach also applies to this case; nevertheless, we fo-
cused on the opposite problem – repeated calling of
relational queries from procedural code.

Nested relational algebra [14] may well reflect the
use of structured and relation-valued variables in
a procedural program; however, the overall comput-
ing strength of nested relational algebra is insufficient
to express while loops. While loops may be added as
an additional second-order construct atop of relational
algebra, or represented by transitive closure in power-
set algebra [9]. In Sec. 3.3, we will show a logical-
programming equivalent of nested relational algebra
together with the drawbacks of such an approach.

Flattening nested relations is an important step
towards effective evaluation of nested algebra and it is
also present in the core of our approach. The original
flattening principle described in [16] was designed to
flatten an isolated nested-relational algebra expression
and it was based on the finite height of the expression
tree. Since a while loop may generate a calculation
of unlimited length, this flattening technique may not
be applied for procedural programs. Instead, we had
to use a numbering technique (see Sec. 3.4) and to
solve some unwanted consequences of the numbering
approach.

Datalog and its extensions, besides their natural
applications in many areas of database theory, was
already successfully used in areas related to procedural
programming.

A language derived from logical programming was
designed for programming in distributed environ-
ment [5]. The opposite problem, generating effective
procedural implementations from Datalog programs,
was studied in [11]. These recent publications suggest
that the potential of Datalog was not exhausted in
the first decades of its life and it may experience a re-
vival fueled by the renewed interest in non-traditional
database architectures.

There were attempts to improve the expressive po-
wer of Datalog towards procedural programming by
non-traditional extensions of its semantics [8]. Extend-
ing Datalog towards complex data structures known
from procedural programming was described in [6].
These powerful extensions relied on significant intru-
sions to the traditional Datalog semantics; consequent-
ly, their use in an intermediate language for a rela-
tional platform would be doubtful.

12 David Bednárek

Datalog with temporal features was used to model
sequences of data-manipulation statements [10] or in
the analysis of procedural programs [15]. Our number-
ing technique shown in Sec. 3.4 is similar to temporal
techniques although used for a different purpose.

Among the sheer number of approaches to Datalog
extensions, semantics and evaluation strategies, local
and, in particular, temporal stratification [12] has mo-
tivated our approach. In addition, we also make use of
the progressivity [10] of rules in the scheduling strategy
used in plan execution.

3 Modeling procedural code in

Datalog style

Algorithm 1 Example: A procedural algorithm with
embedded SQL statements

Require: Relation M(A,B)
1: S := z

2: while exists(M) do
3: X := select min(A) from M

where A not in (select B from M)
4: S := f(S,X)
5: delete from M where A = X

6: end while

7: return S

Algorithm 1 is an example of code written in a pro-
cedural language with SQL embedded. It consumes
a relation M with schema (A,B) representing edges
of a directed graph and traverses it in a topological
ordering. In the loop, a node X is selected that has
no incoming edge in M . The min aggregate is neces-
sary to select from multiple candidates. Later in the
loop, all outgoing edges of X are removed from M .
The output of the loop is the variable S which aggre-
gates the selected values of X using the constant z

and the function f(S,X) (e.g. concatenation). If the
graph is acyclic, the algorithm terminates after at
most |M | iterations; otherwise, it eventually fails to
find any A in the statement 3 and, depending on the
subtle details of the statement semantics, either causes
an exception or loops indefinitely.

Modeling of a while-loop requires an extension to
relational algebra and transitive closure is the most
obvious candidate. Each iteration of the loop changes
the state of the program – the variables M and S

– thus, there is a relation B which models the loop-
body behavior using tuples 〈M,S,M ′, S′〉. Together
with the while-head condition H , the transitive clo-
sure L = σM ′=∅(σM 6=∅B)∗ models the loop. Unfortu-
nately, it requires nested relational algebra to repre-
sent the relation-valued attribute M ; although nested

relational algebra can be simulated with plain rela-
tional algebra [16], this is not the case with transitive
closure. Thus, representing the example code in the
algebraic world requires transitive closure over nested
relational algebra, which includes expensive atomic
operations like equality test over sets and it is diffi-
cult to reduce it to implementable physical operators.

A natural response to the problems of algebraic
representation is switching to Datalog where the while
loop may be handled easily using recursion. However,
the Algorithm 1 demonstrates several obstacles in the
Datalog approach.

3.1 Näıve approach

The following rule forms a näıve Datalog implementa-
tion of the loop body:

state(M ′, S′)← state(M,S), stmt3(X,M),
stmt4(S′, S,X), stmt5(M ′,M,X).

The predicates stmt3, stmt4, and stmt5 imple-
ment the behavior of the statements 3, 4, and 5 of
Algorithm 1. This approach creates extremely ineffi-
cient representation because any model of this pro-
gram contains ground atoms for stmt3, stmt4, and
stmt5 representing all satisfiable variable assignments
for the statements regardless of its reachability dur-
ing an execution. In addition, statement clauses (not
shown here) violate safety rules as some of the vari-
ables are bound only by functional symbols. Conse-
quently, this approach is not suitable for bottom-up
evaluation in Datalog style.

3.2 Using function symbols for relational

algebra

The following, improved representation may be de-
rived from the previous one using the Magic-sets trans-
formation [1]:

state1(M)← m0(M).
state2(M, z)← state1(M).
state3(M,S)← state2(M,S),M 6= ∅.
state3(M,S)← state6(M,S),M 6= ∅.
state4(M,S,X)← state3(M,S),
X = πmin(A)(πAM \ πBM).

state5(M,S′, X)← state4(M,S,X), S′ = f(S,X).
state6(M ′, S)← state5(M,S,X),
M ′ = M \ σA=XM.

state7(S)← state2(M,S),M = ∅.
state7(S)← state6(M,S),M = ∅.

The predicate statei indicate the reachability of
a particular variable assignment in the beginning of
statement i of Algorithm 1. The relational statements
are represented as equality statements containing
function symbols from relational algebra. The rules

Effective Datalog-like representation . . . 13

implement a state machine simulating the execution of
the original program; the model expansion and safety
problems mentioned above disappeared.

The relational statements are implemented using
a non-Datalog mechanism; thus, this approach is far
from being a suitable intermediate representation for
mixed code.

3.3 Nesting and unnesting relational

variables

In this section, the relational algebra was hoisted to
Datalog level using the unnest predicate and the nest
aggregate. This approach is equivalent to nested re-
lational algebra. The predicate unnest(M,A,B) per-
forms the membership test 〈A,B〉 ∈ M ; the general-
ized aggregate nest(A,B) collects all 〈A,B〉 pairs and
combine them into a set (see [3] for exact definiton of
semantics of aggregates in Datalog):

state1(M)← m0(M).
state2(M, z)← state1(M).
cond2(M)← state2(M,S), unnest(M,A,B).
state3(M,S)← state2(M,S), cond2(M).
state3(M,S)← state6(M,S), cond2(M).
cond3(M,B)← state3(M,S), unnest(M,A,B).
state4(M,S,min(A))← state3(M,S),
unnest(M,A,B),¬cond3(M,A).

state5(M,S′, X)← state4(M,S,X), S′ = f(S,X).
state6(nest(A,B), S)← state5(M,S,X),
unnest(M,A,B), A 6= X.

state7(S)← state2(M,S),¬cond2(M).
state7(S)← state6(M,S),¬cond2(M).

This approach unifies the means used for proce-
dural and relational fragments. Nevertheless, it suffers
from the stratification required by the nest aggregate
and the need to incorporate all live variables into single
statei atom.

3.4 Numbering iterations

The following code illustrates the approach we finally
used. The argument T representing time (more exact-
ly, the number of iteration) was introduced to almost
all rules. It allowed dissolution of the original statei
predicates: statei(T) indicates reachability of the sta-
tement i at time T .

m2(1, A,B)← m0(A,B).
s2(1, z).
state2(1).
state2(T + 1)← branch23(T).
cond2(T)← state2(T),m2(T,A,B).
branch23(T)← state2(T), cond2(T).
cond3(T,B)← branch23(T),m2(T,A,B).
x4(T,min(A))← branch23(T),
m2(T,A,B),¬cond3(T,A).

s2(T + 1, f(S,X))← branch23(T),
s2(T, S), x4(T,X).

m2(T + 1, A,B)← branch23(T),
m2(T,A,B), x4(T,X), A 6= X.

branch27(T)← state2(T),¬cond2(T).
return(S)← branch27(T), s2(T, S).

Variable values are represented independently:
xi(T, V) determines the value V of the variable X be-
fore entering statement i at time T . In the case of
relational-valued variable M , the relation is unnested
and its tuples are represented by individual instances
of the atom mi(T,A,B).

Relational (and in general, complex-valued) Data-
log variables and terms are no longer needed – every
term is an atomic value.

Note that the dissolution of statei predicates
created an opportunity for optimization: Every atomic
statement modifies only one variable; therefore, only
one clause is required for each statement, specifying
the new variable value. For a variable, it is sufficient
to have the value specified only at reference points
(for S and M , it is the beginning of the statement 2),
provided that at least one reference point lies on any
path from any definition to any usage of this variable.
In our case, the value for the reference point 2 is spec-
ified twice because there are two control paths leading
to this point.

The execution of rules implementing statements is
guarded by trigger predicates branchi,j which signal-
ize passing from the statement i to the statement j.
These predicates are controlled by conditions and their
negations; in our case, the predicate cond2.

3.5 Requirements on the logic language

In our example Algorithm 1, there is a loop-carried
dependence from the variable M through X to the
next M value which involves negation and aggrega-
tion. This is reflected in the presence of negation and
aggregation in the mutual recursion between the pred-
icates x4 and s2. Our representation is therefore un-
stratifiable; the unstratifiability is inherent to Algo-
rithm 1 since the length of the chain of negations
generated by the loop is unlimited. Consequently, no
stratification may exist for any Datalog-like represen-
tation of this example.

This forces us to use the concept of local stratifica-
tion. Note that in pure Datalog without function sym-
bols, local stratification is almost equivalent to strat-
ification [2]. However, our system does use function
symbols to generate the time values T and to imple-
ment built-in operators and functions of the procedu-
ral language and of SQL.

14 David Bednárek

3.6 Long-range variable passing

In our example Algorithm 1, each iteration of the loop
modifies each variable. However, a loop body may con-
tain conditional statements; thus, a variable may be-
come unmodified in some iterations. In this case, there
must be a mechanism to pass the unmmodified vari-
able value through the loop body. A simple implemen-
tation of such mechanism is the following clause:

valueV (T + 1, X)← valueV (T,X), cond(T).

For every scalar variable V and for every itera-
tion T , a ground atom valueV (T,X) is present in the
model indicating the value X of the variable. Con-
sequently, the model is of the size Ω(τυ) where τ is
the execution time of the procedural program and υ

is the number of variables in the program. For non-
scalar variables the cost is even larger, because the
argument X (or more arguments) encodes an individ-
ual element of a relation or an array, therefore there
are as many ground atoms as the size of the variable.
Evaluating the complete model is thus unacceptably
costly.

Fortunately, the cost of unmodified variable pass-
ing may be lowered to O(τ log(υ)). The principle is de-
picted in Fig. 3 – instead of copying the variable value
on every iteration, there are several layers of preferred
points in time and copying is performed at these pre-
ferred points. Preferred points of layer k occur at the
distance of 2k iterations and copying is allowed either
to a point of higher preference or to a point of access
to the variable. The thick lines in Fig. 3 show how
a variable is passed when it is accessed in the three
points marked at the time axis.

The number of copies done between two accesses
is O(log∆) where ∆ is the time distance between the
accesses, i.e. the length of the passing range. Since an
atomic statement may access only a limited number
of variables, the number n of passing ranges is propor-
tional to the execution time, i.e. n = c ∗ τ . Since the
ranges may not intersect for the same variable, their
sum across of all variables is

∑n
i=1 ∆i ≤ τυ. Conse-

quently, the total cost of copying is proportional to

n∑

i=1

log(∆i) ≤ n log

∑n
i=1 ∆i

n
≤ n log(

τυ

n
) = τc log

υ

c

4 Conclusion

We have proposed a promising approach to mixed pro-
cedural and relational code whose key element is
a novel intermediate representation based on logic pro-
gramming. With respect to the assumed bottom-up
evaluation strategy, the intermediate language falls to
the Datalog family. Special care was taken for effective

Fig. 3. Long-range variable passing

evaluation of the intermediate language – our results
show only O(log υ) degradation with respect to the
native procedural evaluation of a code with υ vari-
ables.

In this paper, we presented the principles of the
proposed language and its use for the representation
of procedural code. For the sake of clarity, we omitted
many technical details and tricks that were necessary
to achieve the reported effectiveness of the represen-
tation.

Whether our approach is viable, it can be shown
only by successful implementation of the whole pro-
cessing chain from Fig. 2. The design of the interme-
diate representation was only a necessary prerequisite
before attempting the implementation.

Our approach was motivated by the lessons learned
from the implementation of a parallel SPARQL en-
gine [4] for the Semantic Web. When using a relational
repository, many Semantic Web algorithms are most
easily expressed as simple procedural algorithms over
relational queries.

Thus, using a combined relational/procedural in-
termediate language may save the tedious and error-
prone work associated with reformulating such algo-
rithms in either purely relational (if ever possible) or
purely procedural way. In addition, the mixed repre-
sentation offers new opportunities for optimization.

If successful, the new architecture may become im-
portant for areas where database access is tightly cou-
pled with non-trivial computing, including the Seman-
tic Web, computational linguistics or some areas of
e-science.

References

1. C. Beeri, R. Ramakrishnan: On the power of magic.

The Journal of Logic Programming, 10(3–4), 1991,
255–299.

2. H.A. Blair, V.W. Marek, J. S. Schlipf: The expressive-

ness of locally stratified programs. Annals of Mathema-
tics and Artificial Intelligence, 15(2), 1995, 209–229.

Effective Datalog-like representation . . . 15

3. M.P. Consens, A.O. Mendelzon: Low-complexity ag-

gregation in graphlog and datalog. Theoretical Com-
puter Science 116(1), 1993, 95–116.

4. Z. Falt, D. Bednarek, M. Cermak, F. Zavoral: On par-

allel evaluation of sparql queries. In DBKDA 2012,
The Fourth International Conference on Advances in
Databases, Knowledge, and Data Applications, 2012,
97–102.

5. S.C. Goldstein, F. Cruz: Meld: A logical approach

to distributed and parallel programming. Technical re-
port, DTIC Document, 2012.

6. S. Greco, L. Palopoli, E. Spadafora: Extending datalog

with arrays. Data & Knowledge Engineering 17(1),
1995, 31–57.

7. R. Guravannavar, S. Sudarshan: Rewriting procedures

for batched bindings. Proceedings of the VLDB En-
dowment 1(1), 2008, 1107–1123.

8. A. Guzzo, D. Sacca: Semi-inflationary datalog:

A declarative database language with procedural fea-

tures. Artificial Intelligence Communications 18(2),
2005, 79–92.

9. M. Gyssens, D. Van Gucht: The powerset algebra as

a result of adding programming constructs to the nested

relational algebra. ACM 17, 1988.
10. G. Lausen, B. Ludäscher, W. May: On active deductive

databases: The Statelog approach. Transactions and
Change in Logic Databases, 1998, 69–106.

11. Y.A. Liu, S.D. Stoller: From datalog rules to effi-

cient programs with time and space guarantees. In
Proceedings of the 5th ACM SIGPLAN International
Conference on Principles and Practice of Declaritive
Programming. ACM, 2003, 172–183.

12. C. Nomikos, P. Rondogiannis, M. Gergatsoulis: Tem-

poral stratification tests for linear and branching-time

deductive databases. Theoretical Computer Science
342(2), 2005, 382–415.

13. L. Palopoli: Testing logic programs for local stratifi-

cation. Theoretical Computer Science 103(2), 1992,
205–234.

14. H. J. Schek, M.H. Scholl: The relational model with

relation-valued attributes. Information Systems 11(2),
1986, 137–147.

15. Y. Smaragdakis, M. Bravenboer: Using datalog for fast

and easy program analysis. In Datalog Reloaded: First
International Workshop, Datalog 2010, Oxford, UK,
March 16-19, 2010. Revised Selected Papers, vol. 6702,
pp. 245. Springer-Verlag New York Inc, 2011.

16. J. Van den Bussche: Simulation of the nested relational

algebra by the flat relational algebra, with an applica-

tion to the complexity of evaluating powerset algebra

expressions. Theoretical Computer Science 254(1-2),
2001, 363–377.

17. E. Visser: Stratego: A language for program transfor-

mation based on rewriting strategies system description

of stratego 0.5. In Rewriting Techniques and Applica-
tions, Springer, 2001, 357–361.

