
Localization of (in)consistencies by monotone reducing automata⋆

Martin Procházka and Martin Plátek

Charles University, MFF UK, Department of Computer Science
Malostranské náměstí 25, 118 00 Praha 1, Czech Republic prma@centrum.cz, martin.platek@mff.cuni.cz

Abstract. A reducing automaton (red-automaton) is
a deterministic automaton proposed for checking word and
sub-word correctness by the use of analysis by reduction. Its
monotone version characterizes the class of deterministic
context-free languages (DCFL). We propose a method for
a construction of a deterministic monotone enhancement
of any monotone reducing automaton which is able with the
help of special auxiliary symbols to localize its prefix and
post-prefix (in)consistencies, and certain types of reducing
conflicts. In other words this method ensures a robust anal-
ysis by reduction without spurious error messages. We for-
mulate natural conditions for which this method ensures
the localization of all prefix and post-prefix inconsistencies
in any (incorrect) word with respect to a DCFL.

1 Introduction

A reducing automaton (red-automaton for short) is
a device that models the so called analysis by reduc-
tion. Analysis by reduction consists in a stepwise sim-
plification of an extended sentence (word) until a sim-
ple sentence (word) is obtained or an error is found. It
is based on another automata model – restarting au-
tomaton (R-automaton) introduced in [2]. Similarly to
R-automaton, red-automaton can only delete symbols.
At some place it decides to delete some of the last k
visited symbols, where k is limited by a fixed constant
and then restarts its computations, i.e. it enters its
initial state and its head is placed on the left end of
the remaining word.

Reducing automaton is formalized as an extension
of deterministic finite automaton. This kind of for-
malization serves here as a basic tool for the method
of algorithmic localization of syntactic inconsistencies
(errors) for the languages from the class of DCFL.
The notion of red-automata was introduced in order to
present naturaly the techniques of minimization. In [7]
we construct to any red-automaton M an unambigu-
ously determined minimal red-automaton Mm which
preserves the recognized language, and the set of all
reductions defined by M .

For a given language L and a word w 6∈ L, it
is natural to define the maximal correct prefix and

⋆ This work was supported by the grant projects of the
Grant Agency of the Czech Republic No. P202/10/1333
and P103/10/0783.

prefix-inconsistency (prefix error) in w. The prefix in-
consistency is the minimal incorrect prefix of w. Let
x ∈ Σ be the leftmost symbol in the word w such that
w = uxv, u, v ∈ Σ∗, there exists a word v′ ∈ Σ∗ for
which it holds uv′ ∈ L and there is no word v′′ such
that uxv′′ ∈ L. The u is the maximal correct prefix
of w, and ux the prefix-inconsistency of w.

In a similar way we can consider (in)correct infixes
for a given language L and a word w 6∈ L. We can eas-
ily see that a prefix-inconsistence can occur in a word
at most once. Our effort is to study properties of re-
ducing automata which will ensure the detection of
(in)correct prefixes, and/or certain types of (in)correct
infixes. The types of the (in)correct infixes studied
here are studied by different techniques already in [1].
We call them here post-prefix (in)consistencies.

In this paper we use the advantage of the fact, that
to any deterministic context-free language L there is
a monotone reducing automaton recognizing L which
is also able to detect the prefix inconsistency (error).
Such type of automaton characterizes the class of
DCFL. This fact is shown in [6].

The paper is structured as follows. First, in Sec-
tion 2 we introduce red-automata and their basic prop-
erties. The Section 3 creates the core of this paper.
Conclusion contains some remarks about connections
of the presented method with the methods based on
the so called head-symbols.

2 Definitions and basic properties

The reducing automaton has a finite control unit and
a working head attached to a list with sentinels on
both ends. It works in certain cycles called stages. At
the beginning of each stage, the head points at the
leftmost item behind the left sentinel, and the control
unit is in a special initial state. In the process of the
stage the automaton moves the head from the item it
currently points to the next item on the right. Dur-
ing such a transition it changes the state of its control
unit according to the current state and the currently
scanned symbol. The stage ends as the control unit
gets to any of special states called operations. There
are three kinds of operations: ACC, ERR, and RED. Both
ACC and ERR-operation halts the whole computation,
ACC accepts and ERR rejects the word in the list. The

56 Martin Procházka, Martin Plátek

RED-operation RED(n) determines how the list should
be shortened. Its parameter n – a binary word of a lim-
ited size – specifies which item on the left of the head
are to be removed from the list. Bit 1 means “remove
the item from the list”, bit 0 means “leave the item
in the list”. After all items designated for deletion are
removed, the automaton resets its control unit to the
initial state and places the head at the leftmost item
behind the left sentinel. The string n ∈ (10∗)+ deter-
mines, which items will be deleted from the list. If the
i-th symbol of n from the right is equal to 1, then the
automaton deletes the i-th item to the left from the
position of the head. The item scanned by the head is
considered as the first one.

All final states of a reducing automaton M create
a finite subset FM of the (unbounded) set { ACC, ERR }∪
{ RED(n) | n ∈ (1·0∗)+ }. Now we are able to introduce
reducing automata in a formal way.

A reducing automaton (red-automaton) is a 7-tuple
M = (ΣM , «, », SM , sM , FM , fM), where ΣM is a fi-
nite input alphabet, «, » 6∈ ΣM are the (left and right)
sentinels, SM is the finite set of internal states,
sM ∈ SM is the (re)starting state, FM is the finite set
of final states (operations), fM : SM ×(ΣM ∪{»}) −→
(SM ∪FM) is the transition function of M , which ful-
fills the following condition:

∀s ∈ SM : fM (s, ») ∈ FM .
We will describe the behavior of M in more details by
two functions enhancing the transition function fM :

δM : (SM ∪ FM ∪ {RED}) × (ΣM ∪ {«, »}) −→ (SM ∪
FM ∪ {RED})
∆M : (SM ∪ F ∗

M)× (ΣM ∪ {«, »}) −→ (SM ∪ F ∗
M)

RED is a new (helping) state which is different from
all states from SM , and the set F ∗

M is defined in the
following way:

F ∗
M = FM ∪ {RED(n · 0k) | RED(n) ∈ FM a k ≥ 1}

Both functions δM , ∆M for all pairs created by a state
s ∈ SM and by a symbol a ∈ (ΣM ∪ {»} are equal to
the function fM . We define the new functions for the
remaining relevant pairs in the following way:

δM (s, «) = sM ∆M (s, «) = sM

and for all a ∈ (ΣM ∪ {»}),

δM (ACC, a) = ACC ∆M (ACC, a) = ACC

δM (ERR, a) = ERR ∆M (ERR, a) = ERR

δM (RED(n), a) = RED ∆M (RED(n), a) = RED(n·0)

δM (RED, a) = RED

The first enhancement of δM :
δ∗M (s, λ) = s, δ∗M (s, ua) = δM (δ∗M (s, u), a)

The first enhancement of ∆M :
∆∗

M (s, λ) = s, ∆∗
M (s, ua) = ∆M (∆∗

M (s, u), a)

We will often use the following conventions:
δ∗M (sM , w) = δ∗M («w), ∆∗

M (sM , w) = ∆∗
M («w).

We define for the both function a further important
enhancement, namely for the final subsets S of the set
SM ∪ FM ∪ {RED} resp. SM ∪ F ∗

M :
δ∗M (S, u) = {δ∗M (s, u) | s ∈ S}
∆∗

M (S, u) = {∆∗
M (s, u) | s ∈ S}

Let us note that the tuple
(ΣM ∪ {«, »}, SM ∪ FM ∪ {RED}, sM , FM , δM) is

a finite automaton which accepts exactly all prefixes
(words) which lead M to some reduction, or to an ac-
ceptation, or to a rejection.

We will consider in the following only the reducing
automata which fulfills the following natural condi-
tion:
δ∗M (sM , u) = RED(n) =⇒ |u| ≥ |n|.

Let us take: L0(M) = {w ∈ Σ∗
M | ∆∗

M («w ») = ACC}.

Constant. Let kM = max
{

|n|
∣

∣RED(n) ∈ FM

}

. We
call kM the characteristic constant of M .

The operation of reduction. We will exactly de-
scribe a reduction of a word by a binary sequence with
the help of the following operation /:

a/0 = a, a/1 = λ, λ/n = λ, u/λ = u,
(u · a)/(n · i) = (u/n) · (a/i),
where u ∈ Σ∗, a ∈ Σ, n ∈ (10∗)+ and i ∈ {0, 1}. The
size of the strings u, n is here unbounded, moreover u
can be longer then n, and vice versa. The reduction of
the word (a) by the sequence 1 · 0 · 1 is given in the
following way: (a)/101 = a.
Using just defined operation we can describe the way
how the red-automaton M reduces a word w ∈ Σ∗

M .
The relation of reduction denoted by ⇒M is intro-
duced in the following way: «w» ⇒M «w′»,
if ∆∗

M («w») = RED(n), and «w»/n = «w′».
If «w» ⇒M «w′» holds, we say, that the automaton M
reduces the word w into the word w′. We can see that
|w| > |w′|.
The relation ⇒+ is the transitive closure of ⇒; ⇒∗ is
the reflexive and transitive closure of ⇒.
Analysis by reduction by M is any sequence of re-
ductions «w1» ⇒ «w2» ⇒ . . . ⇒ «wn», which cannot
be further prolonged. If wn ∈ L0(M), we speak about
accepting analysis by reduction, in the other case we
speak about rejecting analysis by reduction. Often we
will speak about analysis instead of analysis by reduc-
tion.

Stages. Let us recall that each computation of a red-
automaton is divided in stages. At the beginning of
each stage the head points at the leftmost item be-
hind the left sentinel, and the control unit is in the
(re)starting state. The stage ends as the control unit
gets to any final state (operation) from FM . There are
three kinds of operations: ACC, ERR, and RED. Accord-
ingly, we have accepting (ACC-), rejecting (ERR-), and
reducing (RED-)stages.

Localization of (in)consistencies . . . 57

Recognized language. The language recognized by
M is defined in the following way:
L(M) = {w | «w» ⇒∗

M «w′», and w′ ∈ L0(M) }.

Equivalences of red-automata. Two red-automata
M1 and M2 are equivalent, if L(M1) = L(M2).

We will often consider a stronger equivalence. Let
us suppose that for any w ∈ (Σ∗

M1
∪Σ∗

M2
)·{λ, »} hold

at the same time
δ∗M1

(«w) = ACC ⇐⇒ δ∗M2
(«w) = ACC,

δ∗M1
(«w) = RED(n) ⇐⇒ δ∗M2

(«w) = RED(n).
We say that M1 and M2 are strongly equivalent.

We can see that if M1 and M2 are strongly equivalent
then they are equivalent, as well.

Error and correctness preserving property.
We can see the following usefull property:

Lemma 1. If «w1» ⇒M «w2», then w1 ∈ L(M), ex-
actly if w2 ∈ L(M).

Monotony. Monotony is an important property that
enables to characterize the class of DCFL in terms
of monotonic reducing automata. This property was
introduced for restarting automata in [2], first. Infor-
mally a red-automaton M is monotonic if the size of
sequences of non-visited items (symbols) in individ-
ual stages of any analysis by reduction by M is non-
increasing. A monotonic reducing automaton will be
called a mon-red-automaton for short. As an example
see Table 1.

3 Robust analyzer

We introduce for the robust analysis by reduction
a new type of automaton – robust analyzer. Robust an-
alyzer enhances the reducing automaton by the ability
of inserting special auxiliary symbols, and by the abil-
ity to read any input word about its input alphabet to
the end. Robust analyzer A consists of finite control
unit with a finite set of states SA, and from a working
head connecting the finite control unit with a linear
list of items. The list of items is bounded by a left
and right sentinels « and ». All other items contain
a symbol from a finite input alphabet XA, or of a finite
auxiliary alphabet YA. These alphabets are mutually
disjunct.

Robust analyzer is able to delete some items from
the list (operation of reduction). Deleted can be the
item visited by the working head and some items po-
sitioned not far to the left from the working head.
Operations of reductions are controlled by reducing
sequences. Each operation of reduction is followed by
a restart, i.e., transfer of the control unit into the
(re)starting state sA, and a placement of the work-
ing head on the left sentinel «. It means, that the ro-
bust analyzer, similarly as reducing automaton, works

in stages. Therefore we can define the monotony for
robust analyzers in the same way as for reducing au-
tomata.

We divide auxiliary symbols into two types. Each
type serves to a different purpose:
1) for a transfer of local informations between different
stages,
2) for a marking of correct and incorrect sub-words
of the analyzed word, and for marking of the place of
certain types of a reducing conflict.

The auxiliary symbols of the type 2 are called signs.
Here we use two signs:
! – for marking of incorrectnesses,
? – for marking of reducing ambiguities.
We understand under the reducing ambiguity a sub-
word for which is obtained by the robust analysis an
ambiguous information about its current reduction.

There is a technical difference between reducing
automata, and robust parsers. The behavior of the ro-
bust parser is described by the following three func-
tions:

Transition function tA : SA × (XA ∪ YA) −→ SA.
ta determines the state, into which will be transfered
the finite control from its current state after scanning
the symbol from the item visited by the working head.

Inserting function iA : SA × (XA ∪ YA) −→ IA.
iA assigns to a state, and to a scanned symbol an in-
serting sequence from a (final) set IA ⊆ (YA · 0∗)∗.

Inserting sequences serves in a similar way as re-
ducing sequences. They describe the inserted auxiliary
symbols, and their inserting positions. If the value of
the inserting function is λ, it will be nothing inserted.
If the value is !, A inserts new item with the marking !
immediately before (to the left) the scanned item. The
value ?000 says, that the marking ? should be inserted
before the third item to the left before the scanned
item.

Reducing function rA : SA × (XA ∪ YA) −→ RA.
rA assigns to a state, and to a scanned symbol a re-
ducing sequence from a (final) set RA ⊆ (1 · 0∗)∗.

Reducing sequence is here interpreted in the same
way as for reducing automata.

A step of the robust analyzer A consists from the
sequence of the following actions:

Shift to the right. Analyzer A starts each step by
a shift to the right of its working head to the next
item of the working list.

Application of the inserting function. iA by the
current situation (state, symbol) determines the
inserting sequence Is. A controlled by Is inserts
new auxiliary symbols.

Application of the reduction function. rA deter-
mines by the current situation the current reduc-
ing sequence Rs. If RS is non-empty, A controlled
by Rs reduces (deletes) determined items from the

58 Martin Procházka, Martin Plátek

working list. After such a reduction A finishes the
step by a restart, i.e., moves the working head on
the left sentinel «, and transfers the control unit
into the (re)starting state sA. Then a new stage
will be started on the reduced list.
If Rs is empty then A does not perform any reduc-
tion, neither the restart, and it finishes the step by
the following action.

Application of the transition function. tA deter-
mines by the current situation the new state q.
Then A continues from the state q by a further
step of the current stage.

The last difference of A from reducing automata
consists in the fact that A contains only one halt-
ing state END ∈ SA. We will see that the signs of A
will refine the ability of accepting and rejecting by the
states ACC and ERR of reducing automata. For this
purpose we observe the signs ! and ? inserted in the
different stages of the computation into the gradually
reduced working list. We will project the signs into
the original input list in such a way that we will in-
sert the signs into the same positions (i.e. before the
same items) into which they were inserted during the
individual stages of the computation (robust analysis)
by A.

We denote by pA(w) a word w enriched by the
signs (in the way mentioned above) inserted into the
list during the analysis by the robust analyzer A. We
will later formulate our results using this denotation.
As an example see Fig.1. We can consider pA(w) as
the output word of A.

3.1 Prefix and post-prefix (in)consistencies

Assumption. We assume in the following that
L ⊆ Σ∗, and any symbol of Σ is a symbol of some
word from L.

We call a word v inconsistent (incorrect) with re-
spect to the language L ⊆ Σ∗, if for any u, w ∈ Σ∗ is
uvw 6∈ L.

We can see that incorrect words can obtain proper
incorrect sub-words. This fact lead us to the following
notion.
We say that a word v is an incorrect core of the word w
with respect to the language L, if it is a subword of w,
if it is incorrect with respect to the language L, and if
it is minimal by the ordering “to be a sub-word”.

On the other hand, a word v is a correct sub-word
of a word w with respect to the language L, if w = xvy,
and for some x′, y′ is x′vy′ ∈ L. We say that v is
a correct core of a word w with respect to the language
L, if it is a correct sub-word of w with respect to L,
and it is maximal by the ordering “o be a sub-word”.
The assumption that each symbol of Σ is a symbol of
some word of the language L ensures that each symbol

of any word w ∈ Σ∗ is contained in some correct core
of this word.

Prefix consistence is the longest correct prefix v of
the analyzed word w. Prefix inconsistence is the short-
est incorrect prefix of the analyzed word w, i.e., it is
the prefix va of w, where a ∈ Σ. Post-prefix consis-
tence is a suffix x of a correct core behind (to the right
of) the prefix consistence, or behind some of the pre-
vious post-prefix consistencies. We assign to the post-
prefix consistency x the incorrect sub-word xa of w.
We say that xa is a post-prefix inconsistence of w (with
respect to L).

Our effort in the following is to deterministically,
in a monotonic way, and exactly to localize the prefix
and post-prefix (in)consistencies in the analyzed words
from DCFL.

3.2 Post-prefix robust analyzer A

Prefix consistence. A red-automaton M is prefix-
consistent when for each word u and each symbol a
(including the right sentinel) it holds the following: if
∆M (sM , u) ∈ SM and ∆M (sM , ua) 6= ERR, then ua is
a prefix of some word from L(M) · {»}.

The following proposition is derived from the main
result from [2]. The detailed proof is in [6]. There is
also connected with some other propositions.

Proposition 1. Monotone, prefix consistent, red-
automata characterize the class of DCFL.

It is shown in [7] that the notion of red-automata is
useful for the techniques of minimization. There is to
any red-automaton M constructed an unambiguously
determined state-minimal red-automaton Mm which
is strongly equivalent with M .

We will show informally in the next part a method
how construct for a given monotone, prefix-correct,
state-minimal reducing automaton M a robust ana-
lyzer A which determines in any word w ∈ «Σ∗

M» the
prefix-(in)consistence, and (not obligatory all) post-
prefix (in)consistencies. We suppose for the construc-
tion that L(M) 6= ∅.

At first A will use the prefix-consistency of M for
the finding of the prefix-(in)consistency of the ana-
lyzed word w.

Such a situation can occur after one, or after more
stages if M will be transfered into the final rejecting
state ERR. The computation (analysis) of M on the
word w until this moment we describe in the following
way:
1) At first M (possibly) gradually reduces the word w
into the word w′, i.e., w ⇒∗

M w′.
2) Then in the next stage M transfers over some pre-
fix x of the word w′ into some non-final state s ∈ SM ,
i.e., δ∗M (sM , x) = s ∈ SM ,

Localization of (in)consistencies . . . 59

3) Finally from the state s transfers over the next sym-
bol a into the final state ERR, i.e., δM (s, a) = ERR.

We can see that A has founded by the previous sim-
ulation of M the prefix inconsistency of w. For mark-
ing of the prefix inconsistency A inserts the sign !

between the correct prefix «x and the symbol a.
The prefix-consistency of M ensures that M has

visited in the last step described above the symbol a
at the first time. Therefore if w′ = «xay for some y
then ay is a suffix of the original input word w.

Let us now informaly describe how A continues in
the robust analysis over the mentioned suffix ay of the
word w.

We will use the function δM for this aim. This func-
tion was introduced as an enhancement of the transi-
tion function fM . It describes not only the transfers
between the individual states, but also the tranfers be-
tween the indiviual subsets of the set SM∪FM∪{RED},
i.e., of the set of all final and non-final states, and of
a special state RED. We will use it in the following in
order to describe the all possible (partial) computation
of M over the suffix ay at the same time.

We let A to compute the function δM over the suffix
ay = a0a1 . . . a|y| starting from the set SM of all non-
final states of M . A will control the computation in
the following way. Let us initially take the set SM as
a set further denoted as SI .

Let us denote the following part of the computation
of A as a cycle C1. The cycle C1 is performed until for
the set S = δ∗M (SI , a0 . . . ai), where 0 ≤ i ≤ |y|, holds
that ∅ ⊂ S ⊆ SM ∪{ERR}, and S contains some non-
final state. Then A performs the following action: the
head of A will be placed to the next item to the right,
and as (the current value of) the set S will be taken
the set δM (S, ai+1). Here ends the description of C1.

The core of the post-prefix analysis by A are the
following four cases where is not fulfilled the condition
for the continuation of the computation by cycle C1.

Correct suffix. The set S contains the accepting
state ACC; i.e., ACC ∈ S.
If ACC ∈ S, then the current suffix of the analyzed
word w by A is a suffix of some word from L(M).
Therefore, the current suffix cannot contain any fur-
ther inconsistency. The work of A on w is finished at
this moment.

An unambiguous inconsistency. The set S con-
tains a single state – the rejecting state ERR; i.e.,
S = {ERR}.

All the possible computations of M over the
word w behind the previous inconsistency has ended
at the same time in the state ERR. We have found
a suffix of a correct core of the analyzed word, i.e., one
of its post-prefix (in)consistency. At this moment A
inserts the sign ! immediately before the position of

its working head. The automaton A will look for a new
post-prefix (in)consistency behind (to the right from)
the currently inserted sign !. A will take instead of
the set {ERR} as the current value of the set S the
set δM (SM , a), where a is the symbol scanned by the
working head. A will continue in the robust analysis
of the remaining suffix by the schema of the cycle C1.

An ambiguous reduction. S does not contain
ACC, and either does contain two different reducing
states of M , or does contain at least one non-final
state, and at least one reducing state; i.e.,
ACC 6∈ S, and ∃n : RED(n) ∈ S 6⊆ {RED(n), ERR}.
We say that S fulfilling the condition above is an am-
biguous set.
The task for A is to work without false inconsistency
messages. From that reason A separates the ambigu-
ous part from the remaining suffix. It inserts the sign
for the ambiguity ? in the place of the current ambi-
guity, i.e., immediately to the left from the position
of the working head (if the sign is not already placed
there in some of the previous stages). At this moment
A takes for the set S the complete set SM , and con-
tinues in the robust analysis behind the sign ? by the
scheme of the cycle C1.

An unambiguous reduction. The set S con-
tains exactly one reducing operation, and possibly be-
side it the final state ERR; i.e., ∃n : RED(n) ∈ S ⊆
{RED(n), ERR}.

Let us denote as u the sub-word which is created
by the input symbols positioned between the last sign
! or ?, and the position of the working head includ-
ing the scanned symbol. The sub-word u is because of
the prefix-consistency, and because of the state min-
imality of M a sub-word of some word from L(M).
Moreover, the u is reduced in any word w ∈ L(M) of
the form w = vux by the reducing seguence n, i.e, the
reducing sequence and the position of the reduction
are determined unambiguously. A will reduce also by
n, but only the symbols from u if we consider the case
that n can be longer then u.

Observation. The reducing sequence n deletes at
least one symbol from u. This observation follows from
the unambiguity of the reduction of u. Let us sup-
pose the opposite. Then for some z, and n′ is n =
n′ · 0|u|, and δ∗M (sM , zu) = RED(n).
Let z′ be the shortest z with the properties described
above. Since M is prefix-correct «z′u is a prefix of some
word from «L(M)». In the next stage occurs one of the
following variant:

δ∗M (sM , (z′/n′) · u) = RED(n′′) for some n′′

δ∗M (sM , (z′/n′) · u) = RED

δ∗M (sM , (z′/n′) · u) = ACC

δ∗M (sM , (z′/n′) · u) ∈ SM

60 Martin Procházka, Martin Plátek

Each of the presented variant leads to a contradiction
with the unambiguity of the reduction of the word u.
If occurs the first one, then n′′ reduces some symbol of
the sub-word u (since z′ cannot be shorter), therefore
n′′ 6= n and RED(n′′) ∈ S 6⊆ {RED(n), ERR}. By the
remaining variants is the contradiction obvious.

Apart from the reduction of u by n, A will insert
into the list a new item with an auxiliary symbol – the
set U of pairs of an internal state and a word over an
input alphabet of the length kM at most. This auxil-
iary symbol will be used in the next stage to adjust the
set of states computed by the function δM . Our goal is
to avoid situation when δ∗M (s, u) = ERR 6= δ∗M (s, u/n)
for some s ∈ SM . Such internal states s must be elim-
inated. The set U is defined by the following way:

– If |u| ≥ |n|, then A reduces the working list of
items by n and A puts a new item with the auxil-
iary symbol U just in front of the leftmost deleted
item. U = {(s, λ) | ∃s′ ∈ SM : δ∗M (s′, u1) =
s and δ∗M (s, u2) = RED(n)} where u = u1u2 and
|u2| = |n|.

– If |u| < |n|, then A cannot reduce by the whole n as
such a reduction would impact a part of the work-
ing list in front of u; this part would be reduced by
n1 such that n = n1n2 and |n2| = |u|. But a part
of the working list in front of the rightmost marker
! or ? can be reduced in some word of L(M) in
other way or even not at all. So, A will reduce
items behind the rightmost marker ! or ? by the
reducing sequence n2 and it will insert a new item
containing an auxiliary symbol U just to the right
of the rightmost marker. U = {(s, x) | ∃v ∈ Σ∗

M :
x = v/n1 a |v| = |n1| a δ∗M (s, vu) = RED(n)}.

Insertion of the set U into the working list is impor-
tant as it ensures the continuity of subsequent stages
of computation. In next stage, A will use this set to
adjust the set S of internal states computed by func-
tion δM . As soon as A reach the item with U , it substi-
tute S by S′ = {δ∗M (s, v) | (s, v) ∈ U}. It guarantees
that A enter a part of the list impacted by the last
reduction in such states only that led to the last re-
duction of u by n resp. n2.

A uses just defined set U in such a case only when
the new item with U is inserted just behind an item
containing a symbol of the input alphabet or a marker.
Otherwise, when this item contains an auxiliary sym-
bol U ′ different from both markers, then (instead of
insertion of U) A replaces U ′ with U computed in the
following way:

U = {(s, x) | ∃y, (s′, x′) ∈ U ′ : x = yx′/n1 , and
δ∗M (s, y) = s′ , and δ∗M (s′, x′u) = RED(n) , and
|y| = max{0, |n1| − |x′|}},

where n1 is a prefix of n of the length |n| − |u|. In
all cases, the length of the word x contained in any

pair of inserted set U is bounded by the characteristic
constant kM which ensures that U is finite.

Let us note that A stores in its finite control a suit-
able suffix of its working list before the position of its
working head. The length of this suffix need not be
longer then 2 · kM . It contains the input items, and
the inserted values of the set S in the last 2 ·kM steps.

Recall, that we suppose that the automaton M is
minimal and prefix-consistent. The minimality of M
ensures that each state of M is reachable. The state-
reachability, and the prefix-consistence of the automa-
ton M ensure for any word u, that u is a sub-word of
some word of L(M), if δ∗M (SM , u) 6⊆ {ERR, RED}.

If A inserts the sign ! or ? immediately before the
right sentinel » it finishes its computation. Since we
suppose that L(M) is non-empty, is » a suffix of some
word of the language «L(M)» (i.e.,L(M) with sen-
tinels).

Now we have outlined the behavior of A in the first
stage after the localization of the prefix-inconsistence.
In the next stages we need also to consider the signs
and the other auxiliary symbols inserted in the previ-
ous stages. We will not describe here these details.

We illustrate the outlined method by the following
example.

Example 1. We explain the presented method by two
prefix-consistent, state-minimal mon-red-automata.
We will present two different robust analyses of the
following inconsistent word «a++(a)+)(a».

The transition functions of the automata M1

and M3 from [6] which we use in this example are
defined by the tables in the figure 1. We do not present
here the automaton M2 from [6].

The robust reduction analyses of the considered
word are on figures 1a, and 1b. Both figures contain
also the input word enriched by the signs ! and ? on
the corresponding places.

Let us note that in [6] is a detailed description
of a construction which constructs to a given prefix
consistent, state minimal mon-red-automaton M its
robust analyzer A. This construction implements the
outlined method. The robust analyzer A is by this con-
struction given unambiguously for a given M .

3.3 Guarantees of the presented method

We formulate the guarantees of the presented method
as theorems. The detailed proofs can be found in [6].

Theorem 1. Let M be a prefix consistent, state-
minimal mon-red-automaton and A its post-prefix ro-
bust analyzer. For any w ∈ «Σ∗» the following propo-
sitions hold:

Localization of (in)consistencies . . . 61

a + () »

⇒ s0 s1 ERR s2 ERR ERR

s1 ERR RED(11) ERR ERR ACC

s2 s3 ERR s2 ERR ERR

s3 ERR s4 ERR RED(101) ERR

s4 s5 ERR s2 ERR ERR

s5 ERR s4 ERR RED(110) ERR

(a) automaton M1 reducing the word
a+ without brackets around it “from
the left” and the +a with brackets
around “from the right”

a + () »

⇒ s0 s1 ERR s2 ERR ERR

s1 ERR RED(11) ERR ERR ACC

s2 s3 ERR s2 ERR ERR

s3 ERR RED(11) ERR RED(101) ERR

(b) (strongly) monotone automaton
M3 reducing a+ only “from the left”

Table 1: The transition functions for M1 and M3.

«

«

«

«

»

»

aaa

aa

a

a

+

+++

+

+

+

((

(

(

))

)

)!

!!

!

!

? ??

? ??

?

»

»

a

a

a+

+

+ ((

(

)

)

)

0 1 2 3 4 5 6 7 8 9 10 11

SM SMs0

s0

s0

s1

s1

s2

s2

s3

s3

s3
s4 s4

s4

s5

ACC
RED(11)

RED(11)
RED(11)

RED(11)

RED(11)

RED(101)

RED(101)

(a) The robust analyzer of M1

«

«

«

«

«

«

«

»

»

a

a aa a

a

a

a

a

a

+ + +

+

+

+

((

(

(

))

)

)

!

!

!

!

! ! ! !

!

!

!

!

!

»

»

»

»

»

a

a

a

a a

a a

+

+

+ +

(

(

(

((

((

)

)

))

))

0 1 2 3 4 5 6 7 8 9 10 11

SM

SM

SM

SM

SM

S
′

S
′

S
′

S
′

S
′

S
′

S
′

S
′

S
′

S
′′

S
′′

S
′′

s0

s0

s0

s0

s0

s0

s1

s1

s1

s1 s2

s2

s3

s3

s3

s3

s3
ACC

RED(11)

RED(11)

RED(11)

RED(101)

RED(101)

(b) The robust analyzer of M3

Fig. 1: The robust analysis of «a++(a)+)(a».

1. The analyzer A reads (in one or more stages) the
complete word «w» and finishes its computation
in a special state END. Any computation of A is
monotone.

2. If pA(«w») does not contain any sign !, then
pA(«w») = «w» and w is from L(M).

3. If «w» ∈ «L(M)» then pA(«w») = «w».
4. If «u! is a prefix of pA(«w») and u does not con-

tain the sign ! then u does not contain the sign ?

as well, and «u is the longest correct-prefix of the
word «w» with respect to the language «L(M)».

5. If !u! or ?u! is a sub-word of the word pA(«w»)
and u does not contain any sign ! or ? then u is
a suffix of some corect core of the word «w» with
respect to the language «L(M)».

6. If !u» or ?u» is a suffix of the word pA(«w»),
and u does not contain any sign ! or ? then u» is
a sufix of some word from «L(M)».

7. If !u? or ?u? is a sub-word of pA(«w») and u does
not contain any sign ! or ? then u is a sub-word
of some word from «L(M)».

We will discuss the meaning of the sign ?, and we
will formulate properties of the mon-red-automatonM
which ensure that its post-prefix robust analyzer A
does not use the sign ? at all. This sign serves as the
right sentinel for the correct sub-words of L(M) which
lead A to some of two following types of a reduction
conflict. Let u be such a sub-word which is followed by
?. The first type of the conflict means that there are
two different words of L(M) containing u which lead
M by reading the complete u and its prefixes to two
different reductions. The second type of the conflict
means that there is a transfer trough u by M which
leads to a reduction, and at the same time there is an
another transfer leading to the shift to the right of M
from u to the next symbol.

Now we gradually introduce the notions of unam-
biguously reducible sub-word and unambiguously re-
ducing red-automaton, and we will show that a post-
prefix robust analyzer A of M which is unambiguously
reducing, need not to use the sign ? at all.

We say that a sub-word w is reducible by M if for
some n holds that RED(n) ∈ δ∗M (SM , w).

We say that a sub-word w is unambiguously re-
ducible by M if for some n holds that RED(n) ∈
δ∗M (SM , w) ⊆ {RED(n), ERR}.

We say that a sub-word which is reducible but it
is not unambiguously reducible is an ambiguously re-
ducible sub-word.

We say that M is unambiguously reducing if any of
its reducible sub-words is unambiguously reducible.

Example 2. The automaton M1 from the example 1
is not unambiguously reducing. All its ambiguously
reducible sub-words are presented in Table 2a. Let us

62 Martin Procházka, Martin Plátek

note the length of this words is not limited by any
constant, since for any i ≥ 0 holds that

δ∗M1
(SM1 , (+a)

i+) = {ERR, RED(110), s4}.
The minimal unambiguously reducible sub-words

of M1 are in Table 2b.

sub-word w) a) + a+ +a+ . . .
δ∗M1

(SM1 , w) RED(110) RED(110) RED(11) RED(11) RED . . .
RED(101) RED(101) s4 s4 s4

(a) ambiguously reducible sub-words

sub-word w +a) (a) «a+
δ∗M1

(SM1 , w) RED(110) RED(101) RED(11)

(b) minimal unambiguously reducible sub-
words
Table 2: Reducible sub-words of M1.

We can see that in this example the robust ana-
lyzer of M3 has founded all inconsistencies in the word
«a++(a)+)(a»., i.e., it has not used the sign ? at all.
This example illustrates the fact that M3 is an unam-
biguously reducing red-automaton. We can see that
directly from Table 1b.

The meaning of the reducing unambiguity for the
localization of the post-pefix inconsistencies summa-
rizes the following theorem.

Theorem 2. Let M be a prefix consistent, state-mini-
mal mon-red-automaton and A its post-prefix robust
analyzer. If M is at the same time unambiguously re-
ducing then its post-prefix robust analyzer A does not
use the sign ? at all. That means, that A in any word
from «Σ∗

M» determines the prefix inconsistency and
all its post-prefix inconsistencies with respect to the
language L(M).

Corollary 1. Let M be a mon-red-automaton which
is at the same time prefix-consistent and state-
minimal, and A be its robust analyzer. Then there is
a deterministic push-down transducer which translates
any word w from Σ∗

M on the word pA(w).

4 Conclusion

The presented method can be considered as a direct
generalization of the method presented in [9], and as
an essential refinement and a generalization of the
method from [5]. The method in [9] is based on mono-
tone reducing automata, the method in [5] is based
on (monotone) list automata with auxiliary symbols.
Both the methods are based on the so called head-
symbols. The head-symbol (in)consistencies from [9]

create a very special type of (in)consistencies consid-
ered by the method presented in this paper. In the
close future we will show that the set of languages rec-
ognized by unambiguously reducing, prefix consistent,
state-minimal mon-red-automata creates a proper
subclass of DCFL.

References

1. G. V. Cormack: An LR substring parser for noncor-
recting syntax error recovery. In: Proc. of PLDI ’89,
1989, 161–169.

2. P. Jančar, F. Mráz, M. Plátek, J. Vogel: Restarting au-
tomata. In Proc. FCT’95, Dresden, Germany, August
1995, LNCS 965, Springer Verlag 1995, 283–292.

3. F. Otto: Restarting automata. In: Z. Ésik, C. Martin-
Vide, and V. Mitrana (Eds.), Recent Advances in For-
mal Languages and Applications, Studies in Compu-
tational Intelligence, Vol. 25, Springer, Berlin, 2006,
269–303.

4. Gh. Pǎun: Marcus Contextual Grammars, Kluwer,
Dordrecht, Boston, London, 1997.

5. M. Plátek: Construction of a robust parser from a de-
terministic reduced parser. Kybernetika 33(3), 1997,
311–332.

6. M. Procházka: Redukční automaty a syntaktické chyby.
(in Czech) Text for PhD Dissertation, it will be to
achieve soon on the web.

7. M. Procházka: Concepts of syntax error recovery for
monotonic reducing automata. MIS 2004, 94–103,
http://ulita.ms.mff.cuni.cz/pub/MIS/MIS2004.pdf

8. M. Procházka, M. Plátek: Redukční automaty – mono-
tonie a redukovanost. ITAT 2002, 23–32.

9. M. Procházka, M. Plátek: Redukční automaty a syn-
taktické chyby. Proceedings of ITAT 2011 (in Czech),
2011, 23–30.

