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Abstract—One of the current challenges of Service
Oriented Engineering is to provide instruments for dealing
with dynamic and unpredictable environments and chang-
ing user requirements. Traditional approaches based on
static workflows provide little support for adapting at run-
time the flow of activities.

MUSA (Middleware for User-driven Service Adapta-
tion) is a holonic multi-agent system for the self-adaptive
composition and orchestration of services in a distributed
environment.

I. INTRODUCTION

In the last decade web-services have gained industry-
wide acceptance as the universal standard for enterprise
application integration [1]. Their strengths is to be easily
combined as building blocks of a large distributed and
scalable software application [2]. On the other side,
fostering user participation in business process is an
enormous opportunity, where the value is direct and
proportional to the capability to customize service pa-
rameters according to users’ needs [3].

To date, BPEL is one of the most used standards
for implementing the orchestration of services. Even
if workflow-based languages are greatly supported by
industry and research, their approach reveals being static
and not easy to extend for supporting some advanced
features as, for example, run-time modification of the
flow of events, dynamic hierarchies of services, integra-
tion of user preferences and, moreover, it is not easy to
provide a system for run-time execution, rescheduling
and monitoring of activities that is also able to deal with
unexpected failures and optimization.

Recently, the research community on services has
been very active in defining techniques, methods and
middleware for supporting dynamic execution model for
workflows.

This paper presents MUSA (Middleware for User-
driven Service Adaptation) 1, a holonic multi-agent sys-

1Website: http://aose.pa.icar.cnr.it/MUSA/.

tem for the composition and the orchestration of services
in a distributed and open environment.

MUSA aims at providing run-time modification of
the flow of events, dynamic hierarchies of services and
integration of user preferences together with a self-
adaptive system for execution activities that is also able
to monitor unexpected failures and to reschedule in order
to optimize the flow.

Self-adaptation is based on the intuition to break the
static constraints of a classic workflow model by decou-
pling the ‘what’ (the outcome the workflow requires to
be addressed) from the ‘how’ (the way this result can be
obtained) [4].
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Figure 1. The MUSA vision.

Figure 1 illustrates the underlying idea. Services are
provided as usual by world-wide companies, according
to their own business processes. MUSA provides a
platform in which 1) virtual enterprises can deploy some
capabilities that wrap real services, completing them
with a semantic layer for their smart use; 2) analysts
and/or users can inject their goals for requesting a spe-
cific outcome. Under the hypothesis that both goals and
capabilities refer to the same semantic layer (described
as an ontology), then agents of the system are able to
conduct a proactive means-end reasoning for composing
available capabilities into task for addressing the user
request.

Conceptually, this has required the following ingre-
dients: goal-orientation for making user-requirements
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explicit in the system thus breaking the strict coupling
among activities of the workflow; holonic system, for
implementing a dynamic and re-configurable architecture
of autonomous and proactive agents.; self-adaptation, for
generating smart and dynamic plans as response to user-
requests and to unpredictable events of the environment.

The whole system has been implemented by using
JASON [5] and CArtAgO [6], an agent facility based
on the AgentSpeak language [7] and the BDI theory [8].

The running example used along the whole paper
concerns the domain of Travel Services. The system
acts as a smart tour operator for composing simple
services provided in a local area as, for example, flights,
trains, hotels and other tourist attractions. The objective
is to provide users with a product, Travel, that is the
composition and orchestration of atomic services.

The papers is organized as follows: Section II dis-
cusses the languages for injecting goals and deploy-
ing capabilities into the system. Section III provides
details about the dynamic and distributed architecture
that emerges for addressing a user-request. Section IV
illustrates the core algorithm for allowing the agent to
reason on goals and capabilities and for creating plans.
Finally, Section V reports some considerations about the
approach.

II. DECOUPLING GOALS AND SERVICES

MUSA exploits BDI reasoning since it offers the
required level of abstraction to build an autonomous
and self-aware agent. In particular self-awareness is
intended as the ability of agents to recognize their own
capabilities (getting knowledge of their preconditions
and effects), and to conduct some reasoning over them.
The Belief-Desire-Intention (BDI) model was developed
at the Stanford Research Institute during the activities of
the Rational Agency project [9]. The BDI model assumes
software agents had a mental state and a decision making
model representing a promising base for implementing
autonomous and self-adaptive systems [10], [11].

In order to make the system able to reason on user-
requests and available capabilities a solution is to elect
goals and capabilities as first-class entities as it will be
described in this section.

A state of the world is informally described as a set
of non-contradictory first order facts with the assumption
that everything that is not explicitly declared is assumed
to be false. This is dynamically maintained by the agents
of the system as the result of their perceptions and
deductions.

A user-goal is a desired change in the state of
the world an actor wants to achieve. In the proposed
approach a goal describes the starting state and the final
states in terms of states of the world. It is therefore
necessary to make a sharp distinction between BDI
goals and user-goals. A user-goal is injected into the
system at run-time (and therefore it not known a-priori
by agents) On the other side a BDI goal is defined at
design-time and the plans for addressing it are hard-
coded into the agent. Another difference is that an agent
is automatically committed to fulfill all its BDI goals,
whereas it owns a higher level of autonomy with respect
to user-goals [12]. For example, an agent may check
whether it is able to address the goal and then it may
decide of committing to it (generally when the agent can
get some type of advantage from the situation).

A goal model is a directed graph where nodes are
goals and edges are AND/OR Refinement or Influence
relationships. In a goal model there is exactly one root
goal, and there are no refinement cycles. A goal model
is an analysts instrument to create dependencies among
goals.

A capability describes a concrete trajectory in terms
of states of the world the system may intentionally use to
address a given result. Every agent knows its capabilities
together with the way these can be employed. The effect
of a capability is an endogenous evolution of the state
of the world (a function that takes a state of world and
produces a new state of world). The capability can be
pursued only if a given pre-condition is true whereas the
post-condition must be true after the capability has been
successfully executed.

A. GoalSPEC

In order to decouple user-goals from web-services,
MUSA provides GoalSPEC [13], a language designed
for specifying user-goals and, at the same time, enabling
at the same time goal injection and software agent
reasoning. It takes inspiration from languages for speci-
fying requirements for adaptation, such as RELAX [14],
however GoalSPEC is in line with the definition of goal.
The language is based on structured English and it adopts
a core grammar with a basic set of keywords that must
be extended by plugging-in a domain ontology.

The core element of the metamodel is the Goal
(desired by some subject). It is composed of a Trigger
Condition and a Final State. The trigger condition is
an event that must occur in order to start acting for
addressing the goal. The final state is the desired state of
the world that must be addressed. The Subject describes
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TO VISIT SICILY
FOR 1 WEEK

TO VISIT 
PALERMO

AT LEAST 2 
DAYS

TO VISIT 
SYRACUSE

TO VISIT 
AGRIGENTO

AND

TO VISIT 
GREEK 
TEMPLE

TO ATTEND  
GREEK 

TRAGEDY

AND

agent_goal( %TO VISIT SICILY FOR 1 WEEK
    params( [curr_date] , [
       category(curr_date, datetime)]),
    tr_condition( in(curr_date,
       date(2015,7,16),
       date(2015,7,23))),
    final_state( be_visiting(sicily) ),
    herbert
)
...
agent_goal( %TO VISIT SYRACUSE
params( [t] , [
       category(t, integer)]),
    tr_condition( be_at(syracuse) ),
    final_state( and([visited(syracuse,t),
                      t>1] ),
    herbert
)

a) b)

Figure 2. On the left side, an example of goal-model the user can inject into the smart travel system. On the right side, an instance of the
same goal-model, but expressed in terms of agent’s beliefs.

the name of the involved person, role or group of persons
that owns the responsibility to address the goal.

In the domain of the Travel Service, GoalSPEC allows
the user to describe the kind of travel she desires.
Examples of GoalSPEC productions are listed below:

1) WHEN date(16,2,15) THE user SHALL
visited(Palermo) OR visited(Catania)

2) WHEN date(DD,MM,YY) AND (DD > 15 AND
DD < 20) THE user SHALL enjoyed(beach)

3) WHEN date(18,2,15) THE user SHALL
visited(Syracuse) AND attended(greek tragedy)

Figure 2.a shows an example of goal-model where
each goal must be further refined with GoalSPEC. When
injected into the system, the goal is converted into a
set of agent’s beliefs (Figure 2.b) in which the Trigger
Condition and the Final State are expressed as first-order
logical conditions to be tested over the current State of
the World.

For a complete specification of the syntax of Goal-
SPEC see [13], whereas details of the conversion into
agent’s beliefs are provided in [12].

B. Capability

In AI, the need for representing software agent’s
actions in order to implement reasoning directed towards
action is a long-dated issue [15], [16], [17], [18]. An
agent is able to achieve a goal by doing an action if either
the agent knows what the action is or it knows that doing
the action would result in the goal being satisfied [15].

We use a ‘robotic-planning-like’ approach to address
user-goals, in which the Capability is the internal rep-
resentation of an atomic unit of work that a software

Table I
ABSTRACT SPECIFICATION OF THE FLIGHT BOOKING

CAPABILITY.

Name FLIGHT BOOKING

Input DPTPLACE : AIRPORT,
DPTDATE: DATE,
ARRPLACE : AIRPORT,
PASSNUM : INTEGER

Output FLIGHID: STRING,
DPTSCHEDULE: DATE,
ARRSCHEDULE: DATE

Constraints DptP lace 6= ArrP lace
DptSchedule > DptDate
ArrSchedule > DptSchedule
PassNumber > 1

Pre-Condition seat available(FlighId,DptSchedule,
PassNum)

Post-Condition flight booked(FlighId,DptSchedule,
PassNum)

Evolution evo = {remove(being at(DptP lace)),
add(being at(ArrP lace))}

agent may use for addressing changes in the state of
the world. A Capability is made of two components: an
abstract description (a set of beliefs that makes an agent
aware of owning the capability and able to reason on its
use), and a concrete implementation (a set of plans for
executing the job).

We defined a template for providing the abstract de-
scription of a capability as a refinement of that presented
in [19] for LARKS (language for advertisement and
request for knowledge sharing).
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FLIGHT BOOKING SERVICE PARTY
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Figure 3. This figure reveals the business logic for the flight
booking capability composed of three parts: the calculate evolution,
the dispose service and the compensate service.

The template is made of the following elements:

• Name is the unique label used to refer to the
capability

• InputParams is the definition of the input variables
necessary for the execution.

• OutputParams is the definition of the output vari-
ables produced by the execution.

• Constraints is an optional (logical or structural)
constraints on input/output variables.

• Pre-Condition is a condition that must hold in the
current state of the world in order to execute the
capability.

• Post-Condition is a condition that must hold in
the final state of the world in order to assert the
capability has been profitable.

• Evolution is a function that describes how the
capability will impact the state of the world as
consequence of its execution.

By reasoning on the abstract side (input/output/pre-
condition...) the agent may decide when to use the ca-
pability. An example of abstract description is provided
in Table I.

On the other side, the concrete implementation en-
capsulates the code for interacting with the real service
by using SOAP and WSDL through the HTTP/HTTPS
protocol. The implementation of a capability for dealing
web-services is made of three parts: the calculate evolu-
tion, the dispose service and the compensate service.

The calculate evolution protocol is used when com-
posing the whole plan to address a goal; at this stage
the agent has to configure the capability for a specific
context. This means to establish input/output param-
eters to generate a contract with other agents it is
collaborating with. More details will be in Section IV-B
when illustrating the algorithm for the Goal/Capability
Deliberation. For instance, the calculate evolution for
the flight booking searches for flights (Figure 3) that
are compatible with a given goal, i.e those flights that
match with a given DptPlace, DptDate, ArrPlace and
PassNumber.

The dispose service and the compensate service pro-
tocols will be used for orchestration and self-adaptation
purposes (see Section IV-C).

After that a plan has been established for the exe-
cution, the orchestration phase generates, through the
dispose service, the actual value for the user, i.e the user-
goal fulfillment. For instance, the dispose protocol for the
flight booking service actually book the specified flight
and produces a ticket for the user.

However a plan may be subject to changes for sev-
eral purposes. The Self-Adaptation Loop monitors for
failures or new goals that may affect the running plan.
When a plan changes at run-time, it could be the case
that some services that have been disposed are no more
useful in the new plan. The proper way to proceed is to
use the compensate service protocol in order to terminate
the contract with a service. For instance, the compensate
service for the flight booking tries to cancel the user
booking for a specified flight.

C. Problem Ontology Description

The previous sections have illustrated how goals and
capabilities grounds on the state of the world and
therefore, under the surface, they employ first-order
predicates.

In MUSA the Problem Ontology Diagram (POD) [20]
is used to provide a denotation to significant states of
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the world thus giving a precise semantics to goals and
capabilities

An ontology is the specification of a conceptualization
made for the purpose of enabling knowledge sharing and
reuse [21]. A POD is a conceptual model (and a set of
guidelines [22]) used to create an ontological commit-
ment between developers of capabilities and users who
inject goals. An ontological commitment is an agreement
to use a thesaurus of words in a way that is consistent
(even if not complete) with respect to the theory specified
by an ontology [23].

This artifact aims at producing a set of concepts,
predicates and actions and at creating a semantic network
in which these elements are related to one another.
The representation is mainly human-oriented but it is
particularly suitable for developing cognitive system
that are able of storing, manipulating, reasoning on,
and transferring knowledge data directly in first-order
predicates [22].

Grounding goals and capability abstract description on
the same ontology is fundamental to allow the system
to adopt a proactive means-end reasoning to compose
plans. By committing to the same ontology, capabilities
and goals can be implemented and delivered by different
development teams and at the same time enabling a
semantic compatibility between them.

More details on the POD are in [20], whereas the
link between goals and ontology is detailed in [22].
Finally we also provide GIMT (Goal Identification and
Modeling Tool) a tool for supporting ontology building
and goal modeling [24].

III. HOLONIC ARCHITECTURE FOR

SELF-ADAPTATION

Holons provide an elegant and scalable method to
guarantee knowledge sharing, distributed coordination
and robustness.

Holon is a Greek term for indicating something that
is simultaneously a whole and a part [25]. It has been
used for introducing a new understanding of ecosystems,
and their hierarchical nature. A general definition may
be the following:

A holon is a system (or phenomenon) which
is an evolving self-organizing structure, con-
sisting of other holons [26]. A holon has its
own individuality, but at the same time, it
is embedded in larger wholes (principle of
duality or Janus effect).

Many concrete things in nature are organized as a
holarchy (the recursive structure generated by holons and

sub-holons). An example of concrete holon is an organ
that is a part of an organism, but a whole with regard
to the cells of which it is comprised. The human mind
uses holarchies for organizing abstract concepts too. An
example is a word that is part of a sentence, but a whole
with regard to the letters that compose it.

A holon has not necessarily the same properties of its
parts, as well as if a bird can fly, its cells can not. Holon
is therefore a general term for indicating a concrete or
abstract entity that has its own individuality, but at the
same time, it is embedded in larger wholes.

level N-1

level N

level N-2

holon

Figure 4. Holarchy layered architecture (elaborated from [27]).

However, each holon is influenced by, and influences
its larger wholes. And since a holon also contains parts,
it is similarly influenced by, and influences these parts:
information flows bidirectionally between smaller and
larger systems.

The problem of service composition may be observed
as a phenomenon of holon formation [28]. In MUSA
services of a choreography maintain their autonomy but
they all collaborate for providing an integrated func-
tionality. A composed service is therefore a holon who
embeds other component services in a recursive fashion.

A holonic multi agent system is a software system
made of autonomous holons where the holon is defined
recursively (see Figure 4). The holon at generic level N
is made of holons a level N-1 kept together by a commit-
ment relationship. The resulting structure is a holarchy,
i.e. a hierarchical structure generated by holons and sub-
holons where the base case is the agent representing
the atomic holon (it is not further decomposable in sub-
holons).

In MUSA the commitment function that glues together
all the sub-holons to form a super-holon is given by
the injected GoalSPEC. The user-goals represent the
common objective that the holons have to address.

A. The Basic-Holon Schema

The holon formation is an emergent phenomenon. This
section provides details about the static structure of each
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holon of the system whereas dynamic aspects of holon
formation and execution are given in Section IV.

In MUSA all the agents are (atomic) holons, however
aggregations of holons (in super-holons) may emerge at
run-time for managing composed services. A holarchy
is formed as the recursive replication of the same basic
schema. This template defines that each holon of the
system may contain sub-holons playing one of the three
roles: service-broker, state-monitor or goal-handler.

The service broker is the role in charge of establishing
a relationship with one or more end points of a remote
service. The candidate service-broker owns the capability
for managing the conversation with the party that pro-
vides the service (for example the flight booking shown
in Figure 3). The service broker must also be able to
catch exceptions and failures and to raise the need for
self-adaptation.

The state monitor is the role responsible for monitor-
ing the user environment (both physical and simulated,
including persons acting inside). The state of the world is
an abstraction for the operative context in which services
are going to be provided. The perception of the state
of the world is often necessary for invoking services.
This role is in charge of providing the service broker
with the configuration of input/output parameters for
properly invoking a service. It is also responsible of
analyzing inconsistencies in the state of the world, due
to unfeasible beliefs that could generate service failures.

The goal handler is responsible for the interpretation
of the GoalSPEC and for the recruitment of the service-
brokers and state monitors to form a valid holon. The
recruitment is based on a procedure called Means-End
Reasoning (detailed in Section IV) in which service-
brokers and state monitors are selected on the base
of capabilities they offer for addressing a desired state
of the world. During service execution, this role is
also responsible to check the goal life-cycle (active,
addressed, failed).

In terms of governance, the goal handler and each
service broker and state monitor are simple workers, but
at the moment of the holon formation the head of the
holon is elected according to a mechanism of trust and
reputation (that is out the scope of this paper). The head
has three supplementary responsibilities:

1) it is responsible to represent the whole holon to
the outside (other holons), thus if service-brokers
and state monitors have been selected for a set
of capabilities δ1, δ2, . . . then the head offers to
the outside the composition of these capabilities
(namely a task) denoted as ∆ = 〈δ1, δ2, . . .〉);

2) it maintains the current state of the world, obtained
through the perception of all the sub-holons and
it checks for the integrity of the holon structure
(verifying all sub-holons are active);

3) even if each worker maintains its autonomy, the
head influences their activity i) by guaranteeing
their coordination and synchronization, or ii) by
deciding for the re-organization of the holon struc-
ture as a consequence of failures or unexpected
events.

IV. PROACTIVE MEANS-END REASONING

This section illustrates dynamic aspects of the forma-
tion of holons according to the structural rules specified
in Section III-A. The key for dynamically generating
holons is what we call Proactive Means-End Reason-
ing [29], a distributed procedure that allows agents to
autonomously decide how to combine their available
capabilities and therefore how to generate holons.

A. Goal Model Decomposition and Holon Formation

Section II-A has introduced the language for goal
injection. However a goal is rarely injected into the
system as an isolated entity. More frequently the user
will use more goals to specify its request: a goal model,
i.e. a set of correlated goals to be injected at the same
time.

Given a goal model (G,R) where groot ∈ G is the top
goal of the hierarchy, the Goal Model Decomposition
algorithm explores the hierarchy, starting from groot
in a top-down fashion. The objective is to trigger the
formation of one or more holons able to address the
root goal. The algorithm is recursive and it exploits
AND/OR decomposition relationships to deduct a goal
addressability by observing its sub-goals.

We used δj and ∆k = 〈.〉 to respectively denote a
single capability and a task. A task is generally provided
by a holon. We also introduce {.} to indicate a (complete
or partial) solution for addressing a generic goal gi where
the ‘dot’ is a placeholder for a list of tasks that can be
alternatively used for the fulfillment of gi.

An example of solution for a goal has the follow-
ing form: {〈δ1, δ2, . . . , δn〉, 〈δ1, δ2, . . . , δm〉} or the more
compact: {∆1,∆2} where ∆1 = 〈δ1, δ2, . . . , δn〉 and
∆2 = 〈δ1, δ2, . . . , δm〉. To address the goal the system
can alternatively execute ∆1 or ∆2.

Figure 5 illustrates how the three roles interact. Once
a goal gi is injected, the goal-handler checks whether the
goal is a leaf goal or not. If it is not then the goal-handler
proceeds with a top-down recursive decomposition. For
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PUBLISH sub-goal

(goal handler)

DECOMPOSE goal
goal published

[goal IS NOT leaf]

loop [FOR EACH sub-goal]

opt [WHEN solutions_for_all_subgoals]

BUILD solution

TRIGGER holon formation

PICK sequence FROM space

(goal handler)

goal published
[goal IS leaf]

loop [UNTIL len(sol)>NS OR depth>TH]

EXPAND space with new 
capabilities

opt [IF sequence addresses the goal]

PUT sequence INTO solution

opt [IF sequence is incomplete]

ASK for capabilities

SCORE new sequences

(state-managers
/service-brokers)

CALCULATE 
EVOLUTIONREPLY with capability

REPLY with solution

PLAY worker 
role

Figure 5. Sequence diagrams for goal model decomposition, goal/capability deliberation and holon formation.

each sub-goal, the goal-handler injects again it, marking
the relationship to its parent. After that, the goal-handler
waits for solutions for all the sub-goals, and then it
organizes the composed solution for gi by triggering the
corresponding holon formation.

• If the relationship is an AND decomposition the
result is the permutation of all the solutions found
for each child node. If gA is AND-decomposed in
two sub-goals gB and gC , where {∆1,∆2} is the
solution of gB and {∆3} is the solution of gC , then
the solution of gA is {〈∆1,∆3〉, 〈∆2,∆3〉}.

• If the relationship is an OR decomposition the result
is the union of all the solutions found for each child
node. If gA is OR-decomposed in two sub-goals gB
and gC , where {∆1,∆2} is the solution of gB and
{∆3} is the solution of gC , then the solution of gA
is {∆1,∆2,∆3}.

Otherwise, if the goal is a leaf node of the goal model,
then the Goal/Capability Deliberation sub-procedure is
called.

B. Goal/Capability Deliberation

The Goal/Capability Deliberation algorithm fronts the
problem of combining more available capabilities from
state-monitors and service-brokers for addressing a goal:
given a initial state of the world, a set of capabilities and
a goal, the problem is to discover a set of capabilities
which composition may address the goal.

MUSA currently adopts an approach based on a search
algorithm that simulates the formation of a holon and
therefore the execution of various combinations of agent
capabilities (see Figure 6). In this phase the service-
broker adopts the calculate evolution protocol of the
capabilities it owns. This protocol allows the agent to
customize the capability in order to establish if it can
be used for the specific injected goal. For instance the
flight booking capability is customized by searching
a flight from a departure place to a destination in a
given date/time (see Section II-B). When a complete
solution is discovered the algorithm may still continue
to search other solutions. It stops after the number of
solutions is greater than NS (a system constant) or when
time exceeds a threshold and returns all the discovered
solutions.
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Exploring all possible solutions for addressing a user-
goal is a NP-complete problem. The complexity is re-
duced by putting some constraints during the exploration
of the space of solutions. Colored zones of Figure 6
represent invalid solutions that can be discarded. In
addition, considering pre/post conditions, only a limited
number of capabilities can be exploited at each step of
the algorithm, making the execution more scalable and
affordable.

The space exploration algorithm compares partial so-
lutions thus to explore firstly the most promising ones,
according to the number of sub-goals that are already
fulfilled and to a set of domain metrics indicating the
global quality of service. The user can specify which
domain metrics to consider, for instance the maximum
budget or the kind of transportation to use.

Forbidden Space

Forbidden Space

WI

W1

W2
W2.2

W2.1

W1.2

W1.1

W2.2.2

W2.2.1

W2.1.2

W2.1.1

W2.1.3

goal 
fulfillment

c1

c2

c3
c2

c3

c4

c5
c6

c7
c6

c7

<c2,c3,c6>

Figure 6. Abstract representation of the strategy used to explore a
space of solutions for building a plan.

For a formal description of the Proactive Means-End
Reasoning details are provided in [29].

Going back to Figure 5, when one (or more) solutions
exist for the root goal of the injected goal model, then
one or more holons have been formed for addressing the
goal model. One is selected for starting the activities and
eventually addressing the goals. The selection of a plan
may follow many criteria. For instance in the domain of
the travel, the criterion we adopted is the total cost of
the travel.

C. The Self-Adaptation Loop

So far the following assumptions holds: i) services are
delivered over the internet by service providers; as usual,
these are accessible through standards protocols (i.e.
WSDL and SOAP); ii) the system is a distributed and

decentralized software, made of a number of autonomous
agents, each able to perceive the environment and to
act as a broker for some web-services (of which it
knows description, end points and business logic); and
iii) holons are agents or (temporary) group of agents:
each with its own individuality.

Self-adaptiveness is the ability of the whole multi-
agent system to dynamically adapt its behavior to the
execution context. This is done by each individual agent,
through the dynamical execution of its own capabilities,
according to a shared plan and to contingent perceptions.

monitor
goal injection

proactive
means-end 
reasoning

social
commitment

environment
monitoring

capability
execution

failure

unexpected
state

holon-fomation

execution
cycle

Figure 7. Graphical representation of the Self-Adaptation Cycle.

Orchestration. When a holon is selected for address-
ing groot, it becomes operative in order to orchestrate all
the embedded services and producing the compounded
result (see social commitment in Figure 7).

This corresponds to activate its monitoring capabilities
and to execute the dispose service protocols of service
capabilities. State-monitors will be active for the whole
real service execution.

In the domain of the Travel Services, the service
execution has the duration of the user’s travel. Service
broker will book all necessary flights, hotels, ticket
included in the travel plan. The monitor agent, running
in the user’s mobile device, acquires the user’s position,
and it may also be used for changing the travel plan at
run-time.

Self-Adaptation. Thanks to the work of state-
monitors, the head of the holon is continuously updated
about the state of the services and it is able to discover
when something is going wrong by comparing percep-
tions with expected states of the world. When a service
fails, or when a goal can not be addressed then the head
role of the corresponding sub-holon raises an event of
failure, that is cause of an adaptation.

In the running example the adaptation is triggered
by the user who modified her goals (by informing the
system to change the travel plan).
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The adaptation is treated by the system as a reorga-
nization of the holonic architecture. The reorganization
produces a temporary dis-assembly of the holon and
the re-execution of the Proactive Means-End Reasoning
procedures but considering the new situation (failures,
service availability or new user goals) for generating a
new solution.

Before starting the new solution, each holon executes
the compensate protocols of the capabilities that are no
more in the new plan. After that the complete service
orchestration activity starts again.

V. CONCLUSIONS

Holonic multi-agent systems provide a flexible and
reconfigurable architecture to accommodate environment
changes and user customization. MUSA is a middleware
where the autonomous and proactive collaboration of
autonomous agents allows a dynamic (re-)organization
of the behavior in order to address user-requests and/or
unexpected events. The novelty is that the desired service
composition is encapsulated in run-time goal-models
that, when injected into the system, trigger a spontaneous
emergence of new holarchies devoted to orchestrate the
required services.

MUSA have been employed for i) executing dynamic
workflows in small/medium enterprises (IDS Project2),
ii) automatic mash-up of cloud applications (OCCP
Project3, iii) merging protocols for emergency (SIGMA
Project4).

Authors are already working on 1) a more efficient
algorithm for the means-end reasoning, 2) extending the
goal language for including uncertainty and norms, 3) an
automatic learning approach more robust to ontological
discrepancies or language incoherence.
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