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Abstract — ActoMoS is an actor-based software library for 
the development of agent-based models and for their simulation. 
This library offers software components and tools for modeling 
and simulating systems in different application domains. In 
particular, it allows the definition of agent model by reusing or 
extending a set of predefined agent models and supports efficient 
and scalable agent-based simulations involving a large number of 
agents. This paper, after an introduction of the actor model and 
implementation used by the software library, underlines the main 
features of the software library and presents its experimentation 
in some well-known domains. 

Keywords – Agent Based Modeling and Simulation, Actor 
model, Java. 

I.  INTRODUCTION 
Simulation models are increasingly being used for solving 

problems and for helping in decision-making. The size and 
complexity of systems that are usually modeled are ever 
increasing. Modeling and simulation of such systems is 
challenging because it requires suitable and efficient modelling 
and simulation tools that take advantage of the power of 
current computing architectures, programming languages and 
software frameworks, and that make easy the development of 
applications. 

Agent-based modeling and simulation (ABMS) tools and 
techniques seem be the most suitable means to cope with such 
challenges [19], [30]. In fact, ABMS has been and is widely 
used with success for studying complex and emergent 
phenomena in many research and application areas, including 
agriculture, biomedical analysis, ecology, engineering, 
sociology, market analysis, artificial life, social studies, and 
others fields. However, the limit of such tools and libraries is 
that their agent models shown a very limited use of the features 
offered by the computational agents found in Multi-Agent 
Systems (MAS) or Distributed Artificial Intelligence (DAI) 
techniques [12]. Therefore, it may be difficult to model some 
kinds of problem that, for example, require complex interaction 
among agents, and is usually less natural to distribute a 
simulation on a network of computational nodes. 

This paper presents an actor based software library, 
ActoMoS, (Actor Modeling and Simulation) providing a set of 
suitable software components for the development of ABMS 
applications, the visualization of the simulations and the 
analysis of their results. The next section provides an overview 
of the software framework used for the implementation of the 

software library. Section 3 describes the features of the 
software library and shows how it makes easy the developing 
of agent based models and simulations. Section 4 shows its 
experimentation in some well-known ABMS application 
domains. Section 5 introduces related work. Finally, section 6 
concludes the paper by discussing its main features and the 
directions for future work. 

II. CODE SOFTWARE FRAMEWORK 
CoDE (Concurrent Development Environment) is an actor-

based software framework aimed at both simplifying the 
development of large and distributed complex systems and 
guarantying an efficient execution of applications [27]. CoDE 
is implemented by using the Java language and takes advantage 
of preexistent Java software libraries and solutions for 
supporting concurrency and distribution. CoDE has a layered 
architecture composed of an application and a runtime layer. 
The application layer provides the software components that an 
application developer needs to extend or directly use for 
implementing the specific actors of an application. The runtime 
layer provides the software components that implement the 
CoDE middleware infrastructures to support the development 
of standalone and distributed applications. 

 In CoDE a system is based on a set of interacting actors 
that perform tasks concurrently. An actor is an autonomous 
concurrent object, which interacts with other actors by 
exchanging asynchronous messages. Communication between 
actors is buffered: incoming messages are stored in a mailbox 
until the actor is ready to process them. After its creation, an 
actor can change several times its behavior until it kills itself. 
Each behavior has the main duty of processing incoming 
messages through some handlers called cases. Each case can 
process only the messages that match a specific message 
pattern represented by an object that can apply a combination 
of constraints on the value of all the fields of a message. 
Therefore, if an unexpected message arrives, then the actor 
mailbox maintains it until a next behavior will be able to 
process it.  

An actor can perform different types of action. It can send 
messages to other actors or to itself, create new actors, update 
its local state, set a timeout for waiting for the next message, 
change its behavior and kill itself.  An actor can be viewed as a 
logical thread that implements an event loop [11], [21]. This 
event loop perpetually processes events representing the 
reception of messages, the exchange of behavior and the firing 
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of timeouts. In response on a reception of a message or the 
firing of a timeout, the actor finds and executes the suitable 
case for the processing of such an event. When the event 
represents the change of the behavior, the actor moves to the 
new behavior. In particular, the API of an actor does not offer 
any action for managing the reception of messages and for 
monitoring the firing of timeouts. In fact, an application 
developer uses an actor implementation provided by the CoDE 
runtime and needs only to provide the behaviors of the 
different actors of the application by defining the methods for 
their initialization and the message pattern – process method 
pairs of their cases.  

Depending on the complexity of the application and on the 
availability of computing and communication resources, one or 
more actor spaces can manage the actors of the application and 
so an application can be distributed on a network of 
computational nodes. An actor space acts as “container” for a 
set of actors and provides the services necessary for their 
execution. In particular, an actor space takes advantages of two 
special actors: the scheduler and the service provider. The 
scheduler manages the concurrent execution of the actors of the 
actor space. The service provider enables the actors of an 
application to perform new kinds of action. The current 
implementation of the software framework provides services 
for supporting the broadcast of messages, the exchange of 
messages through the “publish and subscribe” pattern, the 
mapping of actors address to symbolic names, the mobility of 
actors, the interaction with users through emails and the 
creation of actors. The last service is important because an 
actor cannot directly create actors in other actor spaces, but can 
delegate it to their service providers. 

One of the most important features of CoDE is the 
possibility of configuring an application with different 
implementations of the runtime components. It allows the use 
of different actor implementations, different schedulers and 
service providers. The type of the implementation of an actor is 
one of the factors that mainly influence the attributes of the 
execution of an application. In particular, actor implementation 
can be divided in two classes that allow to an actor either to 
have its own thread (from here named active actors) or to share 
a single thread with the other actors of the actor space (from 
here named passive actors). Moreover, the duties of a scheduler 
depend on the type of the actor implementation. Of course, a 
scheduler for passive actors is different from a scheduler for 
active actors, but for the same kind of actor can be useful to 
have different scheduler implementations. For example, it can 
allow the implementation of “cooperative” schedulers in which 
actors can cyclically perform tasks varying from the processing 
of the first message in the buffer to the processing of all the 
messages in it.  

The most important decision that influence the quality of 
the execution of an application is the choice of the actor and 
scheduler implementations. In fact, the use of one or another 
couple of actor and scheduler causes large differences in the 
performance and in the scalability of the applications [6].  

CoDE provides three types of actor implementation and 
four types of scheduler. The first two types of actor 
implementation represent active and passive actors. The third 

type of implementation represents special passive actors, called 
shared actors, which get messages from a shared queue. The 
first two types of scheduler implementation drive the execution 
of either active or passive actors (active and passive 
schedulers). The third type of implementation is used for 
shared actors (shared schedulers). Finally, the forth type of 
implementation is used in actor spaces containing both active 
and passive actors (hybrid schedulers). 

The identification of the best couple of actor and scheduler 
implementations for a specific application mainly depends on 
the number of actors, the number of exchanged messages, the 
preeminent type of communication used by actors (i.e., point-
to-point or broadcast) and the possible presence of a subset of 
actors that consume a large part of the computational resources 
of the application. Table 1 shows what should be the best 
choices for a qualitative partition of the values of the previous 
parameters. In particular, the third column indicates the 
preeminence of either point-to-point communication (P) or 
broadcast communication (B), the forth column indicates the 
presence/absence of a subset of heavy actors and the word 
“any” is used when the value of the associate parameter has not 
effect on the choice of actor and scheduler implementations. 

TABLE 1 

actors messages P/B Heavy scheduler 

few any any any active 

many any P no passive 

many few B no passive 
many many B no shared 
many any any yes hybrid 

 

Finally, an actor space can enable the execution of an 
additional runtime component called logger. The logger has the 
possibility to store (or to send to another application), in a 
textual or binary format, the relevant information about the 
execution of the actors of the actor space (e.g., creation and 
deletion of actors, exchange of messages, processing of 
messages and timeouts, exchange of behaviors and failures).   
Therefore, users and other applications can use such 
information for understanding the activities of an application, 
for diagnosing the causes of execution problems, and for 
solving them.  

III. ACTOMOS 
The features of the actor model and the flexibility of its 

implementation make CoDE suitable for building ABMS 
applications [28]. In particular, actors have the suitable features 
for defining agent models that can be used in ABMS 
applications and to model the computational agents found in 
MAS) and DAI systems. In fact, actors and computational 
agents share certain characteristics: i) both react to external 
stimuli (i.e., they are reactive), ii) both are self-contained, self-
regulating, and self-directed, (i.e., they are autonomous), and 
iii) both interact through asynchronous messages and such 
messages are the basis for their coordination and cooperation 
(i.e., they are social).  Moreover, given that actors interact only 
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through messages and there is not a shared state among them, it 
is not necessary to maintain an additional copy of the 
environment to guarantee that agents decide their actions with 
the same information (thing that is usually necessary in some 
application domain with other ABMS platforms). Finally, the 
use of messages for exchanging state information decouples the 
code of agents. In fact, agents do not need to access directly to 
the code of the other agents to get information about them, and 
so the modification of the code of a type of agent should cause 
lesser modifications in the code of the other types of agent. 
Finally, the use of actors simplifies the development of real 
computational agents in domain where, for example, they need 
to coordinate themselves or cooperate through direct 
interactions. 

 Moreover, the use of CoDE simplify the development of 
flexible and scalable ABMS applications. In fact, the use of 
active and passive actors allows the development of 
applications involving large number of actors, and the 
availability of different schedulers and the possibility of their 
specialization allow a correct and efficient scheduling of the 
agents in application domains that require different scheduling 
algorithms [20]. Moreover, the efficient implementation of 
broadcasting and multicast removes the overhead given to the 
need that agents must often diffuse the information about their 
state to the other agents of the application (e.g., their location in 
a spatial domain). 

However, CoDE does not offer specific components for 
ABMS (e.g., simulators, agent models and simulation viewers). 
Therefore, we defined a software library, called ActoMoS 
(Actor Modelling and Simulation), that, starting from CoDE, 
provides a set of software components and tools for making 
easy the development of ABMS applications. 

In large part of ABMS platforms usually a simulation is 
given by a sequence of steps where each agent needs only to 
get information about its surround (i.e., about a subset of the 
other agents and about the environment) and then to use such 
information for deciding its actions. In ActoMoS the simulation 
is similar, but agents get information about agents and the 
environment through messages. 

In ActoMoS, to simplify the interaction between agents and 
the environment, the relevant parts of an environment are 
represented by a set of actors whose goals are to inform the 
agents acting in the environment about their presence and their 
state, and to update their state when the agents act on them. 
Given that the behavior of such actors is similar to the one 
expressed by the agents acting in the environment, we call both 
agents, but we divided them in active and passive agents. 
Active agents are the typical agents of an ABMS, i.e., they 
represent the entities able to move and cooperate with other 
entities acting in the environment. Passive agents define the 
environment of an ABMS, i.e., they represent the relevant 
elements of the environment (e.g., in a spatial domain the 
obstacles and the reference points for the movement of the 
active agents). 

Such agents are usually implemented taking advantage of 
the shared actor implementation provided by CoDE, but it is 
necessary to develop a specific scheduler. Such a scheduler 
executes repeatedly all the agents and after each execution step 

broadcasts them a “clock” message. This last message allows 
to the agents to understand that they have all the information 
for deciding their actions, therefore, they decide, perform some 
actions and, at the end, broadcast the information about their 
new state.  

In ActoMos, all the agents are usually represented by one 
or more actor behaviors that process the input messages 
through two cases. The first case processes the messages 
informing an agent about the state of the other agents. The 
second case processes the “clock” messages. However, while 
active agents exchange messages and perform other types of 
action (e.g., in a spatial domain to change their location), often, 
passive agents have the only duty of sending messages for 
informing the active agents about their presence (e.g., 
immutable obstacles or path points in a spatial domain). 
Therefore, such passive agents are represented by an actor 
behavior providing a case that get the “clock” messages for 
deciding when sending the information about their presence 
and state. 

Of course, different types of agent have different 
implementations of the cases of their behaviors. In particular, 
ActoMoS provides some abstract behavior implementations for 
developing applications in different domains. Such 
implementations define the state information that an agent need 
to maintain in its specific application domain and provides a set 
of abstract methods for processing incoming information and 
for performing the actions in response to the “clock” messages. 

Often the modelling of some systems (e.g., social networks) 
requires a massive number of agents. However, in such kind of 
systems, usually only a part of them is simultaneously active 
and the actions of the different agents do not need a 
synchronization. Therefore, it is necessary a scheduler that can 
manage a massive number of agents, but that can try to 
optimize the execution by scheduling only the active agents. 
The solution we implemented derives from the virtual memory 
techniques used by operating systems: agents increment an 
inactivity counter in the scheduling cycles in which they do not 
process messages and reset it in the cycles in which they 
process a message. The scheduler can get the value of such 
counters and can move an actor in a persistent store when its 
inactivity counter becomes greater than a fixed (or dynamic) 
threshold. The scheduler reload an actor from the persistent 
store when it receives a new message from another agent. 

Of course, the number of active agents can vary over the 
simulation, but the quality of the simulation can be guaranteed 
if the number of the agents, maintained by the scheduler, 
remains in a range that depends on the available computational 
resources. The adopted solution, to limit to the number of 
active actors and to guarantee good performances, is to provide 
a scheduler able to move an inactive agent in the persistent 
storage on the basis of a variable number of inactive cycles. In 
particular, this number becomes high when the number of 
scheduled agents decreases (i.e., the scheduler does not spend 
time for storing agents in the persistence storage and reloading 
them) and becomes more and more low with the increasing of 
the number of scheduled agents.  

Two important features that an ABMS framework should 
provide are the availability of graphical tools for the 
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visualization of the evolution of simulations and the possibility 
of analyzing the data obtained from simulations. CoDE does 
not provide any specific tool for ABMS, but provides a logging 
service that allows the recording of the Java objects describing 
the relevant actions of an actor (i.e., its initialization, reception, 
sending and processing of messages, creation of actors, change 
of behavior, and its shutdown). Therefore, we developed two 
graphical tools, that use such logging data for visualizing the 
evolution of simulations in spatial domains based on 
continuous and discrete 2D space representations, and another 
tool that use them for extracting statistical information about 
simulations. Fig. 9 shows two views of the GUI that supports 
2D spatial simulations. In particular, it presents the initial and 
final views of the evacuation of a large number of pedestrians 
from a building. 

Fig. 9. Initial and final view of the simulation of a crowd 
evacuation. 

IV. EXPERIMENTATION 
We are using ActoMoS for the simulation of two well-

known problems in a spatial environment: the prey-predator 
pursuit problem [2], and the crowd evacuation problem [33]. It 
is possible because ActoMoS offers all the software 
components necessary for modelling agents in a continuous or 
discrete 2D (or 3D) space (e.g., implementation of the 
algorithms that drive the movement of agents, agent models 
representing obstacles and path points). 

The first experimentation of the prey-predator pursuit 
problem had be done in a 2D discrete space. Its main result is 
the definition of a flexible agent model that allows the 
execution of simulations with different algorithms, which drive 
the movement of the prey and of the predators, by simply 
changing the values of some configuration properties. 
Moreover, this agent model allows the solution of the conflicts 

among the moves of agents (i.e., two or more agents cannot 
share the same cell) with different coordination algorithms. The 
only constraint for using such coordination algorithms is that 
each agent needs to perform the current move, compute its next 
move and inform the other agents about it at each cycle. 
Therefore, each agent knows the intentions of the other agents 
before performing its move and performs the move only if the 
rules of the coordination algorithm allow it. This constraint 
does not cause a different behavior of the prey and the 
predators respect to the implementations of other ABMS 
platforms, because even in this implementation an agent can 
only either perform the previously decided move or remain in 
the same cell.   

The first experimentation of the crowd evacuation problem 
had be done in a 2D continuous space and by implementing the 
agents of the crowd by using the boid model [31]. This 
experimentation take advantage of an extended set of boid rules 
that allow to agents to reach a meeting point outside the 
building by following either other agents or a set of alternative 
paths. Even in this case, the main result of the experimentation 
is the definition of a flexible agent model. Such a model allows 
the definition of different types of simulation by using different 
sets of boid rules. In particular, the experimentation shows how 
the possibility to follow other agents and the presence of paths 
towards the exit points make possible successful evacuations. 
Moreover, the use of the boid rules shows how is possible to 
obtain intelligent behaviors without using complex AI 
algorithms. However, the “calibration" of the model requires in 
some cases a large number of simulations to obtain a successful 
evacuation where agents both do not collide among them or 
with obstacles and do not lost time inside the building. In fact, 
the movement of each agent of the crowd is defined by the boid 
rules and so it is necessary to find the correct weights with 
which such rules contribute to the movement of the agent. 

We are working for some time in the analysis and 
simulation of social networks [3], [4]. In particular, currently 
we are using ActoMoS for designing a peer-to-peer social 
network that can guarantee the same services of the centralized 
ones. The problem of peer-to-peer social network is that they 
do not have a centralized service that maintain the information 
shared among the users and so, for example, is difficult for a 
user that wakes up after a period of inactivity to get all the 
information of her/his interest that has been published when 
she/he was offline. 

In particular, we defined a model of a peer-to-peer social 
network where a user can move from the online and offline 
state, publish new information and subscribe to new types of 
information. Each user is defined by a simple agent, which 
performs her/his actions using non-deterministic rules. 
Moreover, such an agent has also the duty to cooperate with the 
other agents to avoid that offline users lost information of their 
interest. Of course, the actors representing the online users 
should perform such a task. Moreover, its implementation 
should have the goals of limiting the amount of the recovered 
information (i.e., only the information of interest for the offline 
users should be recovered) and of guaranteeing privacy (i.e., 
users should not have additional information about the other 
users through the execution of such a task). 
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The experimentation is in the initial phase and we obtain 
good results with a simple algorithm of election that allows to 
the agents, representing the users that are moving offline, to 
assign the recording of the information of their interest, to 
agents of the users that remain online. The problems we need 
to solve is that in some situations there are few or no online 
users. In fact, when there are few users then their agents are 
overloaded in the recording of the information for the other 
users. When there are not users, when a user becomes online 
again it cannot have the lost information and cannot act as 
recorder for the other users. The solution that we are studying 
to solve such two problems is based on the introduction of 
“auxiliary agents”, i.e., agents that: i) do not represent a user, 
ii) are running on computational nodes that are usually 
operative, and iii) have only the task of recording the 
information for the offline users. 

V. RELATED WORK 
A lot of work has been done in the field of agent-based 

modeling and simulation. Moreover, some researchers used the 
actor model for the modeling and simulation of complex 
systems. The rest of the section presents some of the most 
interesting works presented in the previous two fields. 

Swarm [22] is the ancestor of many of the current ABMS 
platforms. The basic architecture of Swarm is the simulation of 
collections of concurrently interacting agents, and this 
paradigm is extended into the coding, including agent inspector 
actions as part of the set of agents. So in order to inspect one 
agent on the display, you must use another hidden, non-
interacting agent. Swarm is a stable platform, and seems 
particularly suited to hierarchical models. Moreover, it supports 
good mechanisms for structure formation using multi-level 
feedback between agents, groups of agents, and the 
environment (all treated as agents). 

Ascape [26] is a framework for developing and analyzing 
agent based models following some of the ideas of Swarm. 
However, it is somewhat easier to develop models with Ascape 
than with Swarm. Indeed, its goal is to allow people with only 
a little programming experience to develop quite complex 
simulations by providing a range of end user tools. Ascape is 
implemented in Java and users would require some ability to 
program in Java together with understanding of the object 
orientation philosophy. 

NetLogo [32] is an ABMS platform based on the Logo 
programming language. Its initial goal was to provide a high-
level platform allowing students, down to the elementary level, 
to build and learn from simple ABMS applications. Now it 
offers many sophisticated capabilities and tools that make it 
suitable for complex applications too. Moreover, a big 
advantage respect to the other platforms is the simplicity of its 
own language. 

Repast [25] is a well-established ABMS platform with 
many advanced features. It started as a Java implementation of 
the Swarm toolkit, but rapidly expanded to provide a very full 
featured toolkit for ABMS. Although full use of the toolkit 
requires Java programming skills, the facilities of the last 
implementations allow the development of simple models with 
little programming experience [24]. 

MASON [16] is a Java ABMS tool designed to be flexible 
enough to be used for a wide range of simulations, but with a 
special emphasis on “swarm” simulations of a very many (up 
to millions of) agents. MASON is based on a fast, orthogonal, 
software library to which an experienced Java programmer can 
easily add features for developing and simulating models in 
specific domains. 

ATC [7] is a framework for the modeling and validation of 
real-time concurrent systems based on the actor model. In 
particular, it inherits all the functional capabilities of actors and 
further allows the expression of most of the temporal 
constraints pertaining to real-time systems: exceptions, delays 
and emergencies. 

The Adaptive Actor Architecture [17] is an actor-based 
software infrastructure designed to support the construction of 
large-scale multi-agent applications by exploiting distributed 
computing techniques for efficiently distribute agents across a 
distributed network of computers. This software infrastructure 
uses several optimizing techniques to address three 
fundamental problems related to agent communication between 
nodes: agent distribution, service agent discovery and message 
passing for mobile agents. 

An actor-based infrastructure for distributing Repast 
models is proposed in [9]. This solution allows, with minimal 
changes, to address very large and reconfigurable models 
whose computational needs (in space and time) can be difficult 
to satisfy on a single machine. Novel in the approach is an 
exploitation of a lean actor infrastructure implemented in Java. 
In particular, actors bring to RePast agents migration, location-
transparent naming, efficient communication, and a control-
centric framework. 

Statechart actors [10] are an implementation of the actor 
computational model that can be used for building a multi-
agent architecture suitable for the distributed simulation of 
discrete event systems whose entities have a complex dynamic 
behavior. Complexity is dealt with by specifying the behavior 
of actors through “distilled” statecharts [14]. Distribution is 
supported by the theatre architecture [8]. This architecture 
allows the decomposition of a large system into sub-systems 
(theatres) each hosting a collection of application actors, 
allocated for execution on to a physical processor. 

Simulator X [18] is a software research platform for 
intelligent interactive simulation that takes advantage of the 
actor model for supporting fine-grained concurrency and 
parallelism. The architecture uses actors to obtain a distributed 
application state and execution model. Simulator X is mainly 
used in the areas of real-time interactive systems, virtual reality 
and multimodal interaction. 

VI. CONCLUSIONS 
This paper presented a software library, called ActoMoS, 

which makes easy the development of agent-based models and 
supports efficient agent-based simulations involving a large 
number of agents. ActoMoS has been implemented on the top 
of CoDE (Concurrent Development Environment) that is an 
actor-based software framework aimed at both simplifying the 
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development of large and distributed complex systems and 
guarantying an efficient execution of applications [27]. 

ActoMoS has been experimented with success in the 
development of ABMS applications. Of course, its current 
implementation does not provide all the features of the most 
known ABMS platforms (i.e., NetLogo [32], Repast [25] and 
MASON [16]). However, the use of the actor model for the 
definition of agents allows to define real agent models where 
agent interact through the exchange of messages avoiding the 
use of a shared state and it simplifies the development of non-
trivial applications where the management of concurrent 
activities may be of primary importance. Moreover, the 
availability of techniques to reduce the overhead of the 
diffusion of broadcast and multicast messages generally allows 
the development of applications whose performances are 
comparable with the ones provide by applications implemented 
by platforms that do not use messages for diffusing the state of 
the environment and of the agents of applications. 

Current work has the goals of extending the functionalities 
of the software library and of continuing its current 
experimentation. Moreover, future work will be dedicated to 
the modeling and simulation of systems for e-business services 
[23], collaborative work services [13] and for the management 
of information in pervasive environment [5][29]. 
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