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Abstract—In this paper we formulate the problem of opinion
formation using a physical metaphore. We consider a multi-
agent system where each agent is associated with an opinion
and interacts with any other agent. Interpreting the agents as
the molecules of a gas, we model the evolution of opinion in
the system according to a kinetic model based on the analysis
of interactions among agents. From a microscopic description
of each interaction between two agents, we derive the stationary
profiles of the opinion under given assumption. Results show that,
depending on the average opinion and on the parameters of the
model, different profiles can be found, but all stationary profiles
are characterized by the presence just of one or two maxima.
Analytic results are confirmed by simulations shown in the last
part of the paper.

I. INTRODUCTION

In this paper we describe a model for opinion formation
among agents. We assume that each agent is associated with
an opinion v ∈ I ⊆ R and that it can change its opinion
each time it interacts with another agent. In the literature,
various approaches that study opinion evolution in a society
of agents have been proposed, and many of them are based
on Cellular Automata (CA) because CA describe well global
effects of local phenomena (see, e.g., [1]). In order to overcome
the synchronism that CA assume, in recent years the use of
microscopic models inspired from physics has been introduced
to describe asynchronous social interactions among agents in a
society [2]. Such models are based on the idea that the laws of
kinetic theory, which are typically used to describe the effects
of interactions between two molecules of a gas, can also be
used to model interactions between two agents.

Statistical mechanics and kinetic theory describe the details
of each interaction between two molecules in a gas but they
also allow finding classic laws which describe macroscopic
properties of gases [3]. Analogously, from the microscopic
laws which describe the details of each interaction between two
agents, collective behaviour can be described from a macro-
scopic point of view [4]. All the research challenges related to
the application of kinetic and statistical formalisms to describe
multi-agent systems gave rise to new disciplines known as
econophysics and sociophysics [5]. Such new disciplines have
been used to describe, e.g., wealth evolution [6] and market
economy [7], and they have also been adopted to characterize
opinion evolution in a society [8].

In this paper, we focus on a model for opinion formation
based on kinetic theory of gases and we analyze the evolution
of the opinion in a society of agents. In particular, we analyze

numerically the opinion evolution according to a model intro-
duced in [9], which mandates that each agent can change its
own opinion because of two different reasons [10]. The first
reason is related to compromise between interacting agents.
More precisely, the model assumes that both agents involved
in an interaction can change their respective opinions in favor
of that of the other agent. The second reason only involves
each single agent and it is related to the fact that an agent
can change its opinion autonomously, giving rise to a process
known as diffusion.

This paper is organized as follows. In Section II, we
describe the considered kinetic model from an analytic point
of view. In Section III, we derive a stationary profile of opinion
in a specific case. In Section IV, we show relevant simulation
results. Section V concludes the paper.

II. KINETIC FORMULATION OF OPINION FORMATION

Kinetic theory of gases describes, from a microscopic
point of view, the effects of interactions among molecules in
gases. By reinterpreting the molecules of a gas as agents, one
can use the kinetic framework to describe social interactions
among agents. While molecules are typically associated with
relevant physical properties, like their velocities, agents can be
associated with attributes that represent some of their charac-
teristics. In particular, since in this work we are interested in
modeling the evolution of the opinion, we assume that each
agent is associated with a scalar parameter v which represents
its opinion and which is defined in a given interval I . In
the following, we consider I = [−1, 1], where ±1 represent
extremal opinions.

In order to use the kinetic approach, we need to define
a function, denoted as f(w, t), which represents the density
of opinion w at time t, and which is defined for each opinion
w ∈ I and for each time t ≥ 0. According to such a definition,

∫

I

f(w, t)dw = 1. (1)

In order to formulate the problem of opinion evolution in
kinetic terms, we assume that the function f(w, t) evolves
on the basis of the Boltzmann equation, which, under our
assumptions, can be written as

∂f

∂t
= Q(f, f)(w, t) (2)

where Q is denoted as collisional operator. According to (2),
the temporal evolution of the opinion density is governed by
the collisional operator Q, whose explicit formulation depends
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on the details of binary interactions between any pairs of
agents. Before deriving a formula for Q, let us describe the
effects of each binary interaction.

Denoting as (w, v) the opinions of two agents before their
interaction, we assume that the following model holds

{
w′ = w + γ(v − w) + ηD(|w|)
v′ = v + γ(w − v) + η∗D(|v|) (3)

where: (w′, v′) are the post-interaction opinions of the two
agents; γ is a constant defined in (0, 12 ); η and η∗ are two
independent random variables with the same statistics; and
D(·) is a function that describes the impact of diffusion in the
considered interaction [9]. From (3) it can be observed that
the post-interaction opinions of the two agents are obtained
by adding to their pre-interaction opinions two terms: the first
one is related to compromise, while the second one is related
to diffusion through function D(·).

Observe that the contribution of the compromise is pro-
portional to the difference between the two pre-interaction
opinions. Taking, for instance, the first equation in (3), we can
conclude that the second addend on the right hand side of (3) is
positive if v > w, so that the opinion of the considered agent
(whose pre-interaction opinion is w) increases if it interacts
with an agent with greater opinion. At the opposite, if w > v
the second addend is negative, so that the contribution of
compromise decreases the opinion of the considered agent
(towards that of the agent it interacts with). Observe that the
contribution of compromise is negligible if γ ' 0, while it
becomes relevant as γ increases.

Concerning the diffusion term, we assume that function
D(·) depends on the absolute value of the opinion, meaning
that the propensity of changing opinion is symmetrical with
respect to 0 (namely, with respect to the middle point of I).
Moreover, we assume that D(·) is non increasing with respect
to the absolute value of the opinion, coherently with the fact
that, typically, extremal opinions are more difficult to change.
Finally, we assume that 0 ≤ D(|w|) ≤ 1 for all w ∈ I.
According to such assumptions, the contribution of diffusion
can be either positive or negative depending on the value of
η and η∗. In the following, we denote the probability density
function of η and η∗ as ϑ(·) and we assume that

∫
ηϑ(η)dη =

∫
η∗ϑ(η∗)dη∗ = 0

∫
η2ϑ(η)dη =

∫
η2∗ϑ(η∗)dη∗ = σ2.

(4)

Such a choice corresponds to considering η and η∗ as 0 mean
random variable with standard deviation σ.

The effects of diffusion in the opinion evolution are taken
into account through the transition rate, which is defined as

W (w, v, w′, v′) = ϑ(η)ϑ(η∗)χI(w
′)χI(v

′) (5)

where χI is the indicator function of set I (equals to 1 if its
argument belongs to I , and to 0 otherwise). The indicator func-
tion in (5) is meant to impose that post-interaction opinions
still belong to interval I [9].

Now that we have completed the definition of the law
that describe each single interaction, we can write the explicit

expression of the collisional operator Q used in (2), which is
given by

Q(f, f) =

∫

B2

∫

I

[′
W

1

J
f(′w)f(′v)−Wf(w)f(v)

]
dvdηdη∗

where B is the support of ϑ, ′w and ′v are the pre-interaction
variables which generate w and v, respectively, ′W is the
transition rate and J is the Jacobian of the transformation of
(′w,′ v) in (w, v). The two addends in the previous equation
represent the gain and the loss of agents in dw, respectively [9].

In order to study the opinion evolution, we need to in-
troduce the weak form of the Boltzmann equation. Generally
speaking, the weak form of a differential equation is obtained
by multiplying both sides by a test function, namely a smooth
function with compact support, and integrating. The weak form
of the Boltzmann equation can then be found by multiplying
both sides of (2) by a test function φ(w) and integrating with
respect to w. Using a proper change of variable in the integral,
the weak form of the Boltzmann equation can be written as:

d

dt

∫

I

f(w, t)φ(w)dw =
∫

B2

∫

I2
Wf(w)f(v)(φ(w′)− φ(w))dwdvdηdη∗.

(6)

Setting φ(w) = 1 in (6) leads to

d

dt

∫

I

f(w, t)dw = 0. (7)

Such an equality corresponds to the fact that the number of
agents is time invariant. This property is also found in classic
kinetic theory and it corresponds to mass conservation.

Considering φ(w) = w as a test function and using (3) in
(6) gives

d

dt

∫

I

f(w, t)wdw =

γ

∫

B2

∫

I2
Wf(w)f(v)(v − w)dwdvdηdη∗

+

∫

B2

∫

I2
Wf(w)f(v)ηD(|w|)dwdvdηdη∗.

(8)

Denoting as u(t) the average value of the opinion at time t,
namely

u(t) =

∫

I

f(w, t)w dw (9)

the left hand side of (8) corresponds to the derivative u̇(t)
of the average opinion. Moreover, observe that the right hand
side term of (8) is 0. As a matter of fact, the first integral
is 0 for symmetry reasons, while the second integral is 0
because, according to (4), the average value of ϑ is 0. From
(8) it can then be concluded that u̇(t) = 0, and, therefore,
the average opinion is conserved, namely u(t) = u(0) = u.
This property corresponds to the conservation of momentum
in kinetic theory.

We are now interested in studying the asymptotic behaviour
of the distribution function f(w, t). For this reason, in order
to simplify notation, let us define a new temporal variable

τ = γt (10)
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where γ is the coefficient which appears in (3) and it is related
to compromise. Assuming that γ → 0, namely that each
interaction causes small changes of opinions, the function

g(w, τ) = f(w, t) (11)

describes the asymptotic behaviour of f(w, t). In [9] it is
shown that by substituting f(w, t) with g(w, τ) in (6) and
using a Taylor series expansion of φ(w) around w in (6) the
following equation of g can be derived

dg

dτ
=
λ

2

∂2

∂w2
(D(|w|)2g) +

∂

∂w
((w − u)g) (12)

where
λ = σ2/γ. (13)

Equation (12) is known in the literature as the weak form of
the Fokker-Planck equation [11].

We are now interested in studying stationary solutions of
this equation, namely those which satisfy

dg

dτ
= 0. (14)

In the following, we denote such solutions as g∞. In next sec-
tion we analyze such solutions for different diffusion functions
D(|w|) and for different values of the parameter λ.

III. RESULTS

In this section we derive relevant stationary profiles for the
opinion density g. Such profiles are defined as solutions of (14)
and, therefore, they depend on the parameters u and λ, which
represent the average opinion and the ratio σ2/γ, respectively,
and on the choice of the diffusion function D. Recalling the
initial assumptions on D, we develop our results considering

D(|w|) = 1− |w| w ∈ I (15)

which is symmetrical with respect to 0 and decreasing in |w|.
With this choice of the diffusion function, equations (3)

become {
w′ = w − γ(w − v) + η(1− |w|)
v′ = v − γ(v − w) + η∗(1− |v|).

(16)

In order to guarantee that post-collisional opinions still belong
to the considered interval I , we need to set the support of ϑ
to

B = (−(1− γ), 1− γ). (17)

As a matter of fact, from (16)

|w′| ≤ (1− γ)|w|+ γ|v|+ |η|(1− |w|)
≤ (1− γ)|w|+ γ + |η|(1− |w|) (18)

and if, according to (17), |η| ≤ (1− γ) then

|w′| ≤ (1− γ)|w|+ γ + (1− γ)(1− |w|) = 1 (19)

Hence, we can conclude that if η ∈ B, then w′ ∈ I . Analogous
results can be derived for v′.

Now, if we substitute the expression of D defined in (15)
in (12) the stationary solution g∞ can then be found, according
to (14), by solving the following partial differential equation.

λ

2

∂

∂w

(
(1− |w|)2g

)
+ (w −m)g = C (20)

where C is a constant which is necessarily 0. As a matter of
fact, by integrating (20) one obtains

λ

2

∫ v2

−v1

∂

∂w

(
(1−|w|)2g

)
dw+

∫ v2

−v1
(w−m)gdw = C(v2+v1)

from which, assuming that v1 → 1 and v2 → 1 one obtains

0 +m−m = 2C

which corresponds to C = 0.

Let us start by considering w > 0, so that (20) can be
written as

λ

2
(1− w)2

∂g

∂w
+ [(w −m) + λ(w − 1)] g = 0. (21)

Dividing both sides by g one obtains

g′

g
=

2

(1− w)
+

2(m− w)

λ(1− w)2
(22)

and observing that

2(m− w)

λ(1− w)2
=

d

dw

(
− 2

λ
log(1− w) +

2(m− 1)

λ(1− w)

)
(23)

equation (22) can be written as

(log g(w))′ =

(
log(1− w)−2−

2
λ +

2(m− 1)

λ(1− w)

)′
(24)

where we have used the facts that
g′

g
= (log g(w))

′

2

(1− w)
= −2(log(1− w))′.

(25)

Integrating (24) and applying the exponential function, one
finally obtains the following expression for the stationary
profile

g∞(w) = c̃u,λ(1− |w|)−2− 2
λ exp

(
2(m− 1)

λ(1− |w|)

)
(26)

where c̃u,λ is a normalization constant that depends on the
average opinion u and on λ.

Let us now consider w < 0 so that equation (20) becomes

λ

2
(1 + w)2

∂g

∂w
+ [(w −m) + λ(w + 1)] g = 0. (27)

Dividing both sides by g leads to

g′

g
= − 2

(1 + w)
+

2(m− w)

λ(1 + w)2
(28)

and by applying analogous calculation to the case with w > 0
one obtains

(log g(w))′ =

(
log(1 + w)−2−

2
λ − 2(m+ 1)

λ(1 + w)

)′
. (29)

Integrating (29) leads to the following formula for the station-
ary profile

g∞(w) = ĉu,λ(1− |w|)−2− 2
λ exp

(−2(m+ 1)

λ(1− |w|)

)
(30)

where w has been substituted by −|w| and ĉu,λ is a normal-
ization constant.
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Since g∞ is the solution of a differential equation it must
be continuous. From (26) and (30) it is evident that g∞ is
continuous for w > 0 and w < 0. Imposing that g∞ is also
continuous in w = 0, the following equality needs to hold

c̃u,λ exp

(
2u

λ

)
= ĉu,λ exp

(−2u

λ

)
. (31)

Finally, the solution of (20) is

g∞(w) = cu,λ(1− |w|)−2− 2
λ exp

[
− 2(1− uw)

λ(1− |w|)

]
(32)

where cu,λ is the quantity in (31) and it needs to be determined
in order to ensure ∫

I

g∞(w) = 1. (33)

Observe that g∞ is piecewise C1 and it is non-differentiable in
w = 0 (as the function D). Moreover, the solution is symmetric
if we change w and u with −w and −u, namely

g∞(w;u, λ) = g∞(−w;−u, λ). (34)

If u = 0, from (34) we can conclude that g∞ is an even
function. Moreover, using a change of variable for negative
values of w, the integral of g∞ can be written as
∫ 1

−1
g∞(w)dw = 2c0,λ

∫ 1

0

(1− w)−2−
2
λ exp

( −2

λ(1− w)

)
dw

and, using the change of variable t = −2
λ(1−w) , the previous

integral can be expressed as

2c0,λ

(
λ

2

) 2
λ+1 ∫ +∞

2
λ

t
2
λ e−tdt. (35)

Finally, introducing the incomplete gamma function defined as

Γ(x, a) =

∫ +∞

a

tx−1e−tdt, (36)

the value of c0,λ which satisfies (33) is then

c0,λ =

[
2
(λ

2

) 2
λ+1

Γ
( 2

λ
+ 1,

2

λ

)]−1
. (37)

The case with u = 0 is the only one where the value of cu,λ can
be found analytically. Other cases can be studied numerically.

We are now interested in studying the derivative of g∞ in
order to find singular points which correspond to maximum or
minimum points. Deriving (26) it can be shown that if w > 0

g′∞(w) = 0 ⇐⇒ 2λ(1− w) + 2(1− w) + 2(u− 1) = 0.

Hence the (unique) singular point is

w =
u+ λ

λ+ 1

and it is positive if and only if λ > −u. Deriving (30), instead,
it can be shown that if w < 0

g′∞(w) = 0 ⇐⇒ 2λ(1 + w) + 2(1 + w) + 2(u+ 1) = 0

leading to the following singular point

w =
u− λ
λ+ 1

.
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Fig. 1. Stationary profiles g∞ for u = 0 and λ = 1/3 (blue line), λ = 1
(red line), and λ = 3 (green line)

Observe that this value is negative if and only if λ > u. Finally,
the following cases can be considered

• if u = 0 then g′∞(w) = 0 in two points that are
symmetric with respect to 0, namely w = ± λ

λ+1

• if u > 0

- if 0 < λ < u then g′∞(w) = 0 in a unique
point, namely w = u+λ

λ+1
- if λ > u then g′∞(w) = 0 in two points,

namely w = u±λ
λ+1

• if u < 0

- if 0 < λ < −u then g′∞(w) = 0 in a unique
point, namely w = u−λ

λ+1
- if λ > −u then g′∞(w) = 0 in two points,

namely w = u±λ
λ+1

Observe that simple manipulations shows that

lim
w→0+

g′∞(w) > 0

lim
w→0−

g′∞(w) < 0
(38)

so that w = 0, which is a non-differentiable point, can be
considered as a point of minimum.

IV. NUMERICAL SIMULATIONS

In this section, relevant numerical results are shown for
stationary profiles for different values of u and λ. We focus
on values of u ≥ 0 as the stationary profiles relative to
negative values of u can be obtained by symmetry, according
to (34). The constant cu,λ, which appears in g∞, is evaluated
numerically, using Newton-Cotes formulas [12].

First, we assume that u = 0 so that the average opinion
corresponds to the middle point of I . As already observed in
the previous section, if u = 0 then g∞ is symmetric with
respect to 0 and it has two maxima at

w = ± λ

λ+ 1
.
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Fig. 2. Stationary profiles g∞ for u = 1/4 and λ = 1/3 (blue line), λ = 1
(red line), and λ = 3 (green line)

As λ increases, such points get nearer to the extremal values
of I , namely to extremal opinions. Observe that increasing the
value of λ corresponds to incrementing the impact of diffusion
with respect to compromise.

Fig. 1 shows the stationary profiles g∞(w) when u = 0
for different values of λ. As expected from (34), the function
g∞(w) is symmetric with respect to 0 and it has a minimum
in correspondence of w = 0 and two maxima whose values
depend on λ. The stationary profiles g∞(w) in Fig. 1 corre-
spond to λ = 1/3 (blue line), λ = 1 (red line), and λ = 3
(green line). If λ = 1/3 the two maxima are in correspondence
of w = ±1/4. Observe that in this case extremal distributions
are associated with a very low probability. If λ = 1, instead,
the maxima correspond to w = ±1/2; while in λ = 3 they
correspond to w = ±3/4.

Therefore, it can be concluded that as λ increases the points
of maximum move towards the extremes of the considered in-
terval I . Observe that, according to its definition, any increase
of λ corresponds to assuming that the contribution of diffusion
is more relevant than that of compromise. Moreover, according
to the results in Fig. 1, any increase of λ leads to stationary
profiles with small values in correspondence of opinions in the
middle of the interval I .

In Fig. 2 the stationary profiles g∞(w) are shown when
considering as average opinion the value u = 1/4. In this case,
the function g∞(w) is not symmetric and, as expected, it has a
local minimum in w = 0. We consider the same values of λ as
in the previous case. For each of these values, the number of
maxima is two, since the condition λ > u is always satisfied.
If λ = 1/3 the positive maximum point is w = 7/16 and the
negative one is w = −1/16. While the negative maximum is
near the middle of the interval I , the positive one is farther.
In Fig. 2 the stationary profile g∞(w) obtained with λ = 1/3
is shown (blue line) and it can be observed that the value of
the maximum in w = 7/16 is far more significant than that
corresponding to w = −1/16, namely the positive opinions are
far more likely than the negative ones. This is in agreement
with the fact that the average opinion u is positive. If λ = 1 the
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Fig. 3. Stationary profiles g∞ for u = 1/2 and λ = 1/3 (blue line), λ = 1
(red line), and λ = 3 (green line)

maxima correspond to w = ±5/8 and w = ∓3/8, as shown in
Fig. 2 (red line). Finally, Fig. 2 also shows the results obtained
with λ = 3 (green line). In this case the maximum points are
w = ±13/16 and w = ∓11/16. As in the previous case, the
points of maximum get nearer to ±1, namely to the extremes
of I , as λ increases. Moreover, observe that largest values of
λ correspond to increasing the likelihood of negative opinions.

Let us now increase the value of the average opinion to
u = 1/2. The stationary profiles g∞(w) are shown in Fig. 3
for λ = 1/3 (blue line), λ = 1 (red line), and λ = 3 (green
line). Observe that if λ = 1/3 the function g∞(w) has only
one maximum, namely the positive one. As a matter of fact,
according the results in the previous section, the negative one
only exists if λ > u. The maximum point is w = 5/8. This
value is greater than the one obtained for the same λ in the
case u = 1/4, accordingly with the fact that, in this case, we
consider a higher average opinion u. When considering λ = 1,
the function g∞(w) has two maxima since the condition λ > u
is satisfied. Such points are w = 3/4 and w = −1/4. As in
Fig. 2, the value of the maximum corresponding to the negative
value of w is less significant with respect to that relative to the
positive value of w. If λ = 3 the two maxima correspond to
w = 5/8 and w = −7/8 and they are nearer to the extremes of
I with respect to those obtained with lower λ. A comparison
of the results in Fig. 2 with those in Fig. 3 shows that in the
latter the values of the positive maxima are greater while those
of the negative maxima are smaller.

Finally, we consider a greater value of the average opinion,
namely u = 3/4. This corresponds to considering an extremist
society. Fig. 4 shows the stationary profiles for λ = 1/3 (blue
line), λ = 1 (red line), and λ = 3 (green line). As in the
previous case, since λ < u, the profile g∞(w) has only one
maximum if λ = 1/3. The point of maximum is w = 13/16
and it is closer to 1 than the other points of maximum obtained
with the same λ for lower values of the average opinion u.
From Fig. 4 it can be shown that, once again, the positive
maximum point moves towards the extreme 1 as λ increases,
since it corresponds to w = 7/8 if λ = 1 and to w = 15/16
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Fig. 4. Stationary profiles g∞ for u = 3/4 and λ = 1/3 (blue line), λ = 1
(red line), and λ = 3 (green line)

if λ = 3. Moreover, Fig. 4 shows that an increase of the value
of the average opinion significantly reduces the value of the
negative maximum, which in this case is negligible. This result
is not surprising since if the average opinion is near the positive
extreme, then the number of agents with negative opinion has
to be small.

V. CONCLUSIONS

In this paper we discussed the opinion dynamics in a
multi-agent system through a kinetic approach. We considered
an opinion evolution model inspired from the interactions of
molecules in a gas and we studied, from an analytic point
of view, the asymptotic behaviour of the opinion distribution.
Assuming that the opinion of an agent can change each
time it interacts with any other agent because of compromise
and diffusion, we showed that the average opinion of the
system is conserved. The stationary profiles can have different
characteristics, depending on the parameters of the model and
on the explicit expressions of the function which represents
the diffusion. For a particular diffusion function, we showed
that the asymptotic distribution is characterized by one or
two maxima, depending on the parameters of the model. The
stationary profiles are shown for different values of the average
opinion and for different parameters of the model.

We recognize in kinetic models the possibility of describing
complex and decentralized systems that can exhibit interesting
emergent behaviours. In particular, we are mainly interested in
using kinetic models as a conceptual framework that captures
essential characteristics of opinion formation in multi-agent
systems, and to adopt it in the design of mobile scenarios
that would eventually use general-purpose industrial strength
technology (see, e.g., [13], [14]). Moreover, we recognize that
kinetic models can be effectively used to model agent-based
cooperation (like the ones discussed in, e.g., [15]), and that
they can be used to study large scale systems (like the ones
discussed in, e.g., [16]). Finally, we are interested in modeling
the emergent behaviors of wireless sensor networks used to
support accurate localization (see, e.g., [17], [18]).

Further investigation on this subject is currently under
development. In particular, we are interested in deriving the
explicit expressions of the stationary profiles with a different
choice of the diffusion function. We aim at studying the
properties of such stationary profiles for different parameters of
the model. At the same time, we are studying the application of
kinetic models to multi-agents systems also from a simulative
point of view. More precisely, we are interested in comparing
analytic results with simulation experiments and in studying
the number of iterations necessary to approximate to a certain
degree an analytic stationary profile.
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