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Abstract—This paper presents a novel JADE add-on that
enables the implementation of location-aware agents by interfac-
ing an underlying ranging technology which provides accurate
distance measures both indoor and outdoor. First, the paper mo-
tivates the work and it presents the features and the architecture
of the add-on. Then, the paper provides a detailed description of
the implemented localization algorithms and it validates them in
an indoor scenario. The experimental results show that accurate
indoor localization can be achieved and that the presented add-
on can be used to support location-aware agents with sufficient
accuracy for targeted educational and ludic applications.

I. INTRODUCTION

The use of software agents on mobile devices dates back
to first cellular telephone prototypes capable of running Java
applications, and JADE was one of the first tools that enabled
FIPA agents on devices that were then called Java-enabled
phones [1]. We used to call them nomadic agents [2] at the
time—to make a clear distinction with then popular mobile
agents—and they were considered one of the most promising
applications of agent technology. More recently, the porting
of JADE to Android devices [3], and the widespread adoption
of JADE and related technologies in crucial parts of large-
scale networks [4], revitalized the idea of having FIPA agents
on mobile appliances to support large communities of users
in their daily activities, which include both collaborative (see,
e.g., [5], [6]) and competitive tasks (see, e.g., [7], [8]). Notably,
the appliances of today offer much more resources than
first Java-enabled phones, and the challenge of implementing
agents for mobile devices is no longer about fitting complex
software into constrained-resource devices; rather, it is about
interfacing agents with the physical world they live in to
ensure that user can be provided with contextualized services.
This paper tackles the problem of interfacing agents with
the physical world by presenting a novel software module
which can be used to develop JADE agents that can sense
the presence of nearby localization beacons or agents, both in
outdoor and indoor scenarios. We prototyped such a module
as a conventional JADE add-on which uses Ultra Wide Band
(UWB) signals (see, e.g., [9]) to measure the distances between
the appliance where the agent is running and target beacons
or other appliances.

The acronym UWB was first used by the US Department
of Defense in late ’80s and it became popular after the
Federal Communications Commission allowed the unlicensed
use of UWB devices in February 2002 under specific emission
constraints [10]. In 2004, IEEE established standardization
group IEEE 802.15.4a with the aim of defining a new physical
layer for the already existing IEEE 802.15.4 standard for
Wireless Personal Area Networks (WPANs). In 2007 the new
IEEE 802.15.4a standard was finally completed and since then

it provides a standardized physical layer for short-range, low
data rate communications, and for high-precision ranging using
low-power devices [11].

The use of UWB signals is particularly promising for
high-precision localization because it ensures high ranging
accuracy. As a matter of fact, due to their large bandwidth,
UWRB signals are characterized by very short duration pulses—
usually in the order of one nanosecond—which guarantee
accurate Time of Flight (ToF) estimation for signals traveling
between nodes. This implies that the distance between a trans-
mitter and a receiver can be accurately determined, yielding
high ranging accuracy. At the opposite, pulses received via
multiple paths using conventional narrow-band signals can
easily overlap, causing wrong ToF estimates, hence wrong
range estimates [11]. Besides their short pulses, UWB sig-
nals are also characterized by low duty cycle which leads
to low energy consumption. Moreover, since UWB signals
occupy a large portion of the spectrum, in order to avoid
interference problems with other devices operating in the
same frequency spectrum, UWB systems normally use low-
power transmissions. Finally, UWB signals are characterized
by their capability of penetrating through obstacles thanks to
the large frequency spectrum that characterizes them (which
includes low-frequency components as well as high-frequency
ones) [12]. Such a feature is particularly interesting in indoor
environments where the presence of walls and objects can
cause Non-Line-of-Sight (NLoS) effects between sensors.

Such unique aspects make UWB technology a good can-
didate for accurate and low-power positioning systems. One
of the main drawbacks that caused the slow adoption of
UWB technology for accurate indoor localization was that
UWRB transceivers were normally very expensive because of
the intrinsic challenges that their design and construction
involve, which also include high frequency logics for mea-
suring very short delays. Only recently, in 2013, a company
named BeSpoon (www.bespoon.com) started producing add-on
modules for smartphones integrating an UWB transceiver and
an antenna at a price compatible with the consumers’ demands.
They also provide a smartphone, called spoonphone, which
natively accommodates the UWB module and which provides
needed drivers for Android. This makes the development of
accurate ranging techniques attractive also for general-purpose
technologies, like JADE, which are not intended to tackle the
issues of interfacing with proprietary, and expensive, hardware.

This paper is organized as follows. Section II describes
the architecture of the add-on and it details the implemented
localization algorithms. Section III describes the experimental
campaign that we performed to validate the usability of the
proposed approach. Section IV concludes the paper.
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II. DISTANCE- AND POSITION-AWARE JADE AGENTS

The presented add-on for JADE uses the tools and tech-
niques that JADE provides to integrate an underlying ranging
technology, like UWB signaling, with the common agent loop.
In details, it provides two customizable JADE behaviours that
can be used to access the services of the add-on.

The first behaviour, called RangeChangeBehaviour,
is in charge of connecting with the underlying ranging tech-
nology to measure the distances with targeted beacons or
smart appliances. The behaviour can accommodate any ranging
technology, provided that an implementation of a specific
interface is available. In the presented prototype we opt for an
implementation that we developed using BeSpoon APIs which
acquires real-time information from the UWB transceiver
installed in a spoonphone. The RangeChangeBehaviour
is scheduled when an above-threshold change in the distances
from selected beacons or smart appliances occurs, or when
the agent decides to change the set of devices that it monitors.
In details, the implemented prototype uses hardware-specific
unique identifiers associated with transceivers that allow target-
ing beacons and smart appliances indifferently. This way the
agent developer is free to track beacons and smart appliances
with a single, generic mechanism.

The second behaviour that ships with the add-on is called
LocationChangeBehaviour and it uses the first be-
haviour to acquire needed ranging information to inform an
agent about its current location in a predefined reference
frame. The behaviour can be configured to acquire needed
information for performing localization from a set of beacons,
commonly known as Anchor Nodes (ANs), and its main duty
is to invoke a pluggable localization algorithm to estimate the
location of the agent every time the distances from ANs change
significantly. The developer is free to implement custom local-
ization algorithms but the add-on contains two general-purpose
algorithms that can be used if no additional information besides
the distance from a fixed number of ANs is available. Such
algorithms are discussed in details below.

For the sake of simplicity, the implemented localization
algorithms currently consider only a bi-dimensional scenario,
i.e., they assume that all the nodes lay on the same plane.
The same algorithms can be extended to the case of a three-
dimensional scenario (e.g., see [13]). Both implemented local-
ization algorithms are based on the ToF between some nodes
with known positions, the ANs, and the Target Node (TN),
whose position is to be estimated.

Denoting as M the number of ANs, we indicate the
coordinates of the ANs as

s; = [zi,y)” ie{l,...,M}. (D

The (unknown) TN position and its estimate are denoted as
u=[z,y]" and & = [Z,9]7, respectively. Moreover, the true
and the estimated distances between the :—th AN and the TN
are denoted as

ri 2w sl = /(- 5)7(—s,)
P2 o sl = /(@ 5)7 (@ - s,)

Observe that if the coordinates of the ANs and the true
distances {r;}£, are known, the true position of the TN can

ie{l,...,M}

ie{l,...,M}.
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be found according to simple geometric considerations. As
a matter of fact, the TN lies on each of the circumferences
{C;}M,, centered in {s,;}}, with radii {r;}}, and, therefore,
its coordinates satisfy the following system of equations

(x—21)*+ (y—y)* =1}
)

(z—zm)® + (y—ym)® =iy

Since the true distances are unknown, we can only rely on
their estimates {#;}*,. The circumferences {C;}}, centered
in {s;}M, with radii {#;}}, lead to the system of equations

(x—21)*+ (y— )’ =7
3)

(—2m)’+ (y—ym)? =7

Obviously, due to the errors that affect the range estimates
{#i}M,, the circumferences {C;}*, would hardly intersect
in a unique point, hence proper localization algorithms need
to be used. For such algorithms we assume that the errors
which affect the range measurements {7;}}; can be modeled
as independent additive random variables {v;} |, namely

f1:T1+l/1 ZG{L,M} (4)
Let us define as v the vector whose 7—th element is v; and let
us denote as () its covariance matrix.

Many range-based localization algorithms have been pro-
posed in the literature, and they can be broadly classified
into passive and active [14]. Passive localization relies on
the fact that wireless communications strongly depend on the
environment and it is based on the analysis of the scattering
caused by obstacles found along signal propagation and/or of
the variance of a measured signal. Such analysis allows finding
changes in the received signals that can be used to detect and
locate targets [15].

In active techniques, instead, all nodes are equipped with
sensors and with an electronic device which sends needed
information to support a proper localization algorithm. Since
all implemented algorithms follow in this category, we focus
on range-based localization with active tags, which can be
based on the ToF, the Angle of Arrival (AoA), or the Re-
ceived Signal Strength (RSS) of the signals [10]. As explained
in the introduction, we are mostly interested in ToF-based
localization algorithms because are particularly well suited
when dealing with UWB signaling. In details, if two synchro-
nized nodes communicate, the node receiving the signal can
determine the Time of Arrival (ToA) of the incoming signal
from the timestamp of the sending node. If the nodes are not
synchronized, Time Difference of Arrival (TDoA) techniques
can be employed, which are based on the estimation of the
difference between the arrival times of UWB signals traveling
between the TN and ANs. A large number of ToF-based
localization techniques have been proposed in the literature.
Among them, it is worth mentioning iterative methods [16],
graph-based methods [17], closed-form algorithms [18] and
optimization methods [19]. Observe that the accuracy of some
of such algorithms may strongly depend on the number of
ANs [20] and on their topology [21].
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In the following subsections, the two implemented lo-
calization algorithms are described in details, namely: the
Circumference Intersection (CI) algorithm and the Two-Stage
Maximum-Likelihood (TSML) algorithm. From now on, we
assume that M = 3 ANs are used to locate the TN.

A. Circumference Intersection (CI) algorithm

This subsection describes the CI localization algorithm,
which is a very intuitive algorithm that can be considered as
the basis of other more elaborate algorithms (see, e.g. [22]).

In order to better explain the CI algorithm, let us make
a few geometric considerations on the considered problem.
As already observed, the position of the TN coincides with
the (unique) intersection of the three circumferences in (2).
Since such circumferences are unknown, in order to find the
TN position estimate & = [z, ] it is necessary to consider
proper localization approaches based on the set of equations
(3). According to the CI algorithm, since the circumferences
do not intersect in a single point, we intersect pairs of them.

More precisely, we define the following three sets—each of
which contains two points—obtained by intersecting the three
different pairs of circumferences

L={p,.q, = CnéC (5)
L={p,q, = NG (6)
I3 = {pyy: 4yt = C2NCs. @)

We then choose a point from each of the three sets, namely
P, € 11, P, € I5, and Py € I3, so that the three selected points
are the nearest ones to each other. More precisely, since such
points belong to circumference intersections, it can be shown
that they can be chosen as

llp, — o, minper, ger,|[p — 4| ®)
llp, —pyll = minger|[p, — 4l ©)

Given these three points, the TN position estimate is chosen
as their baricenter.

We remark that the intersection between two circumfer-
ences can be empty. Assume, for instance, that in (5) the
set I; is empty, namely the circumferences C; and C> do not
intersect. In this case, the two nearest points of C; and Cy are
found, and if their distance is below a given threshold, they
are considered the two intersection points and the set I; is
redefined as the set containing such two points. Otherwise,
the TN position estimate is found based on the remaining
intersections, whenever possible.

B. Two-Stage Maximum-Likelihood (TSML) algorithm

This subsection describes a TSML method that uses ToA
information, hence known as TSLM-ToA method [23]. Such
method is a well-known localization algorithm, and it is
particularly interesting because it was shown that it can attain
the Cramer-Rao Lower Bound, which is a lower bound for
the variance of an estimator [24]. A detailed derivation of this
method can be found in [25].

The starting point of the TSML algorithm is once again the
quadratic system (3), where we set M = 3 as in the case of the
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CI algorithm. In order to solve it, a two-step approach based
on Maximum-Likelihood (ML) technique can be considered.
First, let us define as a; the Euclidean norm of the coordinate
vector of the :—th AN, namely

a; £ ||s;l| = \Ja} +y7  ie{l,....,3}. (10

Moreover, let us introduce the new variable

a2 Al = 2% + g (11)
so that system (3) can be rewritten, in matrix notation, as
G w=h (12)
where
T Y1 —-0.5
G, =2 s
x3 ys —0.5
5 5 (13)
i T —ay
Ql = Q El = :
g - a3

Let us also introduce w; and h; the vectors analogous to
@, and to h,, respectively, where estimated quantities are
substituted by true ones, namely

. r? — a?
wi=| v b= . a9
" -

While (12) might look like a linear system, it is not, since
the third element of the solution vector w; depends on the
first two according to (11). The solution w; of the system (12)
can be determined through an ML approach. In particular, as
suggested in [18], let us define the error vector

¢, 2 h — G w,. (15)

Given a positive definite matrix W, the weighted Least Square
(LS) solution of (12) that minimizes %fg L P L s

@ = (G W, G) G W, by (16)

The simplest choice of the weighting matrix W is the identity
matrix. In [25] it is shown that the choice of El which
minimizes the variance of w; is

W, £ Covly, ™ = (4BQB)™ (17)

where @ is the covariance matrix of the ToA range measure-
ments {ri}M,, B is a diagonal matrix whose elements are

{r;}M ., and the last equality follows from the fact that, from
(4) and (13), ¥ | can be written as

g1 :ﬁl

where © denotes the entrywise product and the last approx-
imation is obtained neglecting second order perturbations.
With this choice of the weighting matrix one obtains that

Covle,] = (G] W, G ).

—hy=2Bv+vOr~2Br (18)

105



Proc. of the 16th Workshop “From Object to Agents” (WOA1S5)

AN
6l 3
5 *
TN3
4t
E 3 *
=
TN2
P
1 *
™,
ok
AN, AN,

Fig. 1. The positions of the three considered ANs are shown (blue stars),
together with the three different TN positions (red stars).

The second stage of the algorithm is meant to take into
account the dependence of 7 on the other elements of the
unknown vector in the system of equations (12) and it involves
the solution of the system

g Wy = hy (19)
where @, = (22 QQ)T
1 ) @]}
0 1 hy = | (@45 (20)
1 [©1]5

with [@,]. denoting the j—th component of @,. The linear
system (19) can be solved, once again, through the ML
technique. Defining the error vector

%2 éﬁQ —§2£2

the weighted LS solution of (19) that minimizes the weighted
norm of ¢, with a positive definite matrix Eg is

2y

QQ = (QQT Ez §2)_1§§ Ez ﬁQ' (22)

As considered to solve (12), the simplest choice of the weight-
ing matrix W _ is the identity matrix. In [25], it is shown that
the choice of %/V which minimizes the variance of @, is

W, £ Covly,] ' = (4B, Covlay] B,)™!  (23)

where B, = diag(z,y,0.5). Finally, the position estimate can
be expressed as

(24)

>

= U [VBah Vi)

where U = diag(sign(w,)).

III. EXPERIMENTAL SETUP AND RESULTS

This section shows localization results obtained with the
two implemented algorithms, as described in the previous
section, using a JADE agent running on a spoonphone used as
TN. We use three localization beacons as ANs and we put them
at three corners of a rectangular room whose sides measures
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Estimated Positions (Cl) Estimated Positions (TSML)
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0.9 1 0.9
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0.7 L . L 0.7 i i i
0.8 0.9 1 11 1.2 0.8 0.9 1 11 1.2

z[m] z[m]

(a) (b)
Fig. 2. The 1000 position estimates of TN7 obtained using: (a) the CI
algorithm; and (b) the TSML algorithm.

3 m and 6 m. Using the same notation introduced in Section
II, the ANs position in the experimental setup are denoted as

51=100,0"  5=0,0" s=[06" @5
where the coordinates are expressed in meters. In Fig. 1 the
ANs positions are shown (blue stars) in the considered room.

Inside the same room, we consider three different TN
positions, denoted as red stars in Fig. 1. First, we put the TN
in the points whose coordinates, expressed in meters, are

uy =[1,1]" (26)
Observe that this point, denoted as TN; in Fig. 1, is close to
one of the corners of the room and close to AN;. The second
TN position we consider is

uy = [1.5,3]7 (27)
which corresponds to the point in the middle of the room,
denoted as TNy in Fig. 1. Finally, the coordinates of the last
TN position, expressed in meters, are

uy = [2,5]" (28)

Observe that this point is symmetric of u; with respect to the
center of the room.

For each TN position {TN;}3_,, we first acquire the three
distance estimates between the TN and the three ANs and
we use such distances to feed the two localization algorithms
described in Section II. This process is iterated N; = 1000
times, thus obtaining 1000 position estimates for each of the
two localization algorithms and for each TN position. For each
iteration j € {1,..., Ny} we define the distance between the
true TN position and its estimate in the j-th iteration as

dj = [|i; — | (29)

where 4

; 18 the TN position estimate in the j-th iteration.
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Fig. 3. The 1000 position estimates of TN2 obtained using: (a) the CI
algorithm; and (b) the TSML algorithm.

We can define the minimum, the maximum, and the average
distance between the true TN position and its estimates as

E s * 5 *
=
a9t PPYERF ¥
481 481
47 L L 47 i L i
18 1.9 2 21 2.2 18 19 2 2.1 2.2
z[m] z[m]
(a) (b)
Fig. 4. The 1000 position estimates of TN3 obtained using: (a) the CI

algorithm; and (b) the TSML algorithm.

TABLE 1. VALUES OF MINIMUM, MAXIMUM, AND AVERAGE
DISTANCES BETWEEN THE TRUE TN POSITIONS AND THEIR ESTIMATES.

dmin = min dj
je{1,...,Nr}

dmax = max  dj
Jj€{l,....,Nr} (30)
1 <

davg = E;dj.

The performance of the localization algorithms is evaluated in
terms of the values in (30).

Fig. 2 is relative to the position estimates of the target TN;
of Fig. 1. More precisely, Fig. 2 (a) shows the 1000 position
estimates obtained using the CI algorithm and Fig. 2 (b) shows
the 1000 position estimates obtained according to the TSML
algorithm. A comparison between Fig. 2 (a) and Fig. 2 (b)
shows that the CI algorithm performs slightly better that the
TSML algorithm in terms of the distance between the true
position and the estimated ones. As a matter of fact, from
Table I it can be observed that while the average distance
dave when using the CI algorithm is 5.7 c¢m, the value of
dave Obtained with the TSML algorithm is 7.2 cm. Analogous
considerations hold when considering d,,i, and dpax. More
precisely, the value of d;, relative to the CI algorithm is
only 0.03 cm and it becomes 1.4 cm when using the TSML
algorithm, while the values of dy,x correspond to 12.2 cm
and 13.8 cm, respectively.

Fig. 3 refers to the position estimates of the target TNy
of Fig. 1, corresponding to the case where the TN is in the
middle of the room. The 1000 position estimates obtained
using the CI algorithm are shown in Fig. 3 (a) while Fig. 2 (b)
shows the 1000 position estimates obtained with the TSML
algorithm. In this case, the performance of the two algorithms
are similar, as also shown in Table I, which shows that the
values of d,y, obtained with the CI and the TSML algorithms
differ by only 2 mm. Observe that in this case the values of
davg are greater than those obtained when considering TNy,
meaning that the localization in the center of the room is less
accurate. In particular, Table I shows that the distances between

H dmin [cm] ‘ dmax [cm] ‘ davg [cm] ‘
TN; - CI 0.03 12.2 5.7
TN; - TSML 1.4 13.8 72
TN, - CI 9.6 17.6 11.6
TN, - TSML 10.1 16.5 11.4
TN3 - CI 4.6 19.5 11.5
TN3 - TSML 5.7 20.8 12.2

the true TN position and its estimates are always greater than
dmin ~ 10 cm.

Finally, Fig. 4 is relative to the position estimates of the
target TN3 of Fig. 1 obtained: (a) using the CI algorithm;
and (b) using the TSML algorithm. In this case, the average
distance d,. between the true TN position and its estimates
is 11.5 cm when using the CI algorithm and 12.2 cm with the
TSML algorithm, as shown in Table I. The performance of
the two algorithms are similar also in terms of dy,i, and dyy .-
Observe that the values of d .5 are greater than those obtained
in the previous two TN positions. The values of d,;,, instead,
are greater than those relative to TN; but they are smaller than
those relative to TNs.

IV. CONCLUSIONS

This paper presents a novel JADE add-on that enables the
implementation of distance- and location-aware agents. Using
this add-on an agent can measure the distance that separates
the smart appliance that hosts it from target beacons and other
smart appliances. Experimental results summarized in Table I
show that the average error in locating the smart appliance in
an empty room is less than 15 cm, which ensures sufficient
accuracy for considered education and ludic applications.
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