Proc. of the 16th Workshop “From Object to Agents” (WOA1S5)

June 17-19, Naples, Italy

A Case Study on Goal Oriented Obstacle Avoidance

Pasquale Caianiello and Domenico Presutti
DISIM
Universita dell’ Aquila
Italy
Email: pasquale.caianiello@univagq.it, domenico.presutti @ gmail.com

Abstract—We report on several test experiments with a mobile
agent equipped with an artificial neural net control to achieve a
basic route direction goal reflex in a 2-dimensional environment
with obstacles. A real assembled 4tronix Initio robot kit agent is
reproduced with its sensor and motor characteristics in a virtual
environment for experimenting and comparing the behavior of
its artificial neural net control with two different learning ap-
proaches: A standard supervised error back propagation training
with examples, and an unsupervised reinforcement learning with
environmental feedback.

I. INTRODUCTION

Obstacle avoidance is a basic task for mobile agents.
Commercial and research applications address the problem by
using state of the art adaptive techniques and mathematical
modeling. In this work we confronted with the task of using
a simple neural net architecture to equip a real 4tronix Initio
[22] robot kit agent with a basic obstacle avoidance control.
Its neural net would take inputs from a pre-processing of the
sensor information of the robot, and provide an output to
control its motor actuators. The preliminary aim of our project,
as reported in this paper in its start-up phase, is to construct the
virtual counterpart of the 4tronix Initio robot agent, that will
let us perform fast and reliable test experiments of possible
control strategies at the reflex proactive level with real time
response.

As a result we identified a simple artificial neural net
architecture and a pair of training strategies that would let the
agent show simple adaptive/reactive capabilities in avoiding
obstacles, while achieving a given target position goal. The
agent’s control neural net model is deliberately kept at a reflex
level state, the perceptron basic input/output transduction, with
no high level onthologies or primitives for describing the
environment, no environment model or map acquisition capa-
bilities, and no planning ability of any sort. The environment
only exists for the pattern that it induces on the agent sensors
at a given position and orientation. The agent will have to react
by issuing control settings to its motor components, taking into
account its given goal.

II. ToOLS AND METHODS

A. The agent

The agent hardware is a 4tronix Initio [22] robot kit con-
trolled by a Raspberry Pi B+ [25] computer that emulates the
artificial neural net and performs low level sensor acquisitions
and issues motor control primitives to a PiRoCon v.2 motor
controller. The agent is equipped with a pan-tilt HC-SR04

142

ultrasonic sensor that acquires a panoramic of the environment,
two infrared front mounted close range proximity sensors and
a GY-80 multi-chip module that integrates a 3-axis gyroscope,
a 3-axis accelerometer, and a 3-axis digital compass used for
determining the agent absolute orientation.

B. The virtual agent and environment

The virtual environment is constructed as a bit matrix of
dimension m x n. Each bit represents a virtual position for the
agent. A bit is set to 1 if the position is blocked, there is an
obstacle, and the position cannot be occupied by the agent. The
goal area of the environment is a circle identified by a center
position and a boundary radius. The virtual agent emulates
the real hardware in performing its basic control commands to
the hardware controllers. The basic functioning cycle has three
steps: Sample sensors, Compute orientation and velocity, Run
for a time unit.

C. The artificial neural net control module

The artificial neural net (ANN) is emulated through the
use of the Neuroph [24] Java framework used to implement a
3-layer fully connected feed-forward net with 31 input units,
62 hidden nodes, and 10 output units as depicted in fig 1. All
artificial neurons in the net are sigmoid. The 31 input units
collect the infrared proximity information, the distances in 9
predefined pan positions measured by the ultrasonic sensor
(normalized in the unity interval), the distance from the agent
to the center of the goal area, and the computed orientation
angle with respect to the given direction goal, and represented
into 18 binary direction intervals of 20° to comprise the whole
360° range. The output units consist of 9 binary orientation
directions (the front 180°) and one real in the unity interval to
represent the distance to be covered. So the control protocol
will interpret the ANN output by setting the agent to the
orientation given, and let it run for the given distance.

The experiments are described when the ANN is trained
according to two different protocols: Supervised error Back
Propagation (BP), environment reinforcement learning (RL).

1) The Supervised error back propagation protocol: The
BP protocol was experimented with training sets (TS) con-
structed in two different ways, the first (BPp) by sampling the
control choices of a human pilot, the second (BPh) by record-
ing the behavior choices of a heuristic evaluation function in a
wide range of enumeration of input sensor patterns. The use of
BPh allowed the easy construction of much larger virtual TS,
while TS construction with BPp required synchronized reading

Proc. of the 16th Workshop “From Object to Agents” (WOA15)

10 sigmoid

OUTPUT . = 2 = a .

630 connections
Initial [-0.2,+0.2]

@ @ @ - R P OOBZsigmoid + bias
2016 connections
Initial [-0.2,+0.2]

INPUT O O O

31 sigmoid +bias

Fig. 1.
duction

The perceptron architecture for proactive reflex input/output trans-

the agent sensors and sampling the human pilot, who on the
other hand was allowed to comprise higher level cognitive
faculties, and was allowed to look at the environment map
while making his decision.

To preserve generalization capabilities and avoid over-
fitting of the ANN, the training process was stopped at
predetermined network mean square error limit values. For this
purpose, each training sets were split in two subsets of training
subsets and test subsets, containing respectively 90% and 10%
of the original TS samples. Optimal limit network error values
were determined by training the network on training subsets
and testing network response on the test subsets: when the error
on the test subsets became stationary or increasing, training
was paused and finally completed by using the full TS and the
minimum network error limit.

After the training process, the trained ANN’s were tested
on the agent control system and some critical aspects emerged
as of the dimensional insufficiency of the TS obtained with
BPp when compared to the dimension of the inputs state
configurations. It did, in fact, bring about insufficient network
output response polarization on new input patterns and a
random-like behavior of the agent in specific configurations.
On the other hand the ANN’s trained with TS constructed
with BPh was often trapped in stationary or cyclic behavior in
sub-optimal positions with respect to the navigation goal. In
consideration of the complementary critical aspects described
for the BPp and BPh cases, a third instance of the ANN was
trained with an incremental training process that combined
both pilot driving and heuristic evaluation TS. In this case
the learning process consisted in two training phases. In the
first phase, the BPh TS was used for training the ANN for a
small number of training epochs in order to give the network
base response capabilities in covering a wide range of input
configurations. In the second phase, the BPp TS was used until
training completion. As the incremental trained network was
finally tested on the robot, the critical behaviors were relieved.

All the test results reported in the following are obtained by
running the net configuration obtained at the end of the training
process as described, with a sample environment problem.

2) The Reinforcement Learning protocol: The same net
architecture has been used with an unsupervised reinforcement
training protocol Q-learning [15] with reward/reinforce func-
tion taking into account distance from goal, runs length, and
route declination from goal direction. Reward was corrected by
the Q function [15] to take into account future effects of actions

June 17-19, Naples, Italy

omz-»x-zC

m<--9v>0>

omomomz-m=

cmm_<,mvcm
;
41
X
=
|
$
=

Fig. 2. Simulation Results, Environment complexity 3. Each snapshots
records the trajectory of the corresponding row agent. Trajectory position
points have a time scale color starting from yellow and going to darker red
as time passes. Goal area is green. See text.

and to loosen excessive local/opportunistic behavior. The net
was trained on a collection of problem samples with random
selection of obstacles configuration, starting position and goal
area to obtain the trained net that was used in the comparative
experiments where its behavior is sampled at different levels
of maturation.

III. EXPERIMENTAL RESULTS

The experimentation was performed after training the ANN
both with the BP protocol and with the Q-learning protocol
leading to two net configurations named SUPERVISED (SU)
and REINFORCED(RE) respectively.

The RE network was trained for 4000 learning sessions of
100 base cycles. For each session a random start and target is
assigned in a randomly generated environment. Main learning
parameters are set by an empirical optimization process to the
following values: Learning rate= 0.036, Future actions discount
factor g= 0.24, and Stochastic action selector temperature
T=4. A high temperature T value is necessary during the
learning process to maximize reinforcements. The T value is
subsequently lowered on tests to 0.4 value to appreciate neural
network response and control system behavior.

On the other hand, SU is trained for one learning epoch
on the BPh TS, containing 1.152.000 training samples, and
resulting in a 0.14 mean square error after training. The
following 2076 training epochs are performed with the BPp
TS, with 400 training samples. Mean square error at the end
of the training process is 0.07. Both BPh and BPp training
sets are generated on several base generation sessions of 50
iterations each. Network weights are initalized with random
values in the [-0.02, 0.02] interval.

After training the nets are tested on a battery of several tests

143

Proc. of the 16th Workshop “From Object to Agents” (WOA1S5)

omz->»x-H4zc

m<-—40>0>

3 - H - o= 5 -
b =< QU RTeS I
g ; o ‘ - - ‘ ’\ 3 A
s - 1 — L - T | -
£ 2 o =8 1< -

R — , -t

: e ale =k ol @

: — = — +

Fig. 3. Simulation Results, Environment complexity 7. Each snapshots
records the trajectory of the corresponding row agent. Trajectory position
points have a time scale color starting from yellow and going to darker red
as time passes. Goal area is green. See text.

120
100 «

80

=& EFFICACY-
60 PERSISTENCE

—e—TIME TO REACH
%0 GOAL
INEFFICACY

PERFORMANCE INDEX

20

0
0 50000 100000 150000 200000 250000 300000 350000 400000
LEARNING CYCLES

Fig. 4. Performance of RE while training

on the same environment, organized in groups of increasing
environment complexity.

Their behavior, while trying to achieve the target area
goal, is sampled as reported in fig. 2 and in fig.3. The whole
experiment ranges over 8 batteries of 10 random problems
in the same environment, for 10 different random choices
of start/target positions. In the figures we show the outcome
of just two test batteries, where each row collects an order
preserving under-sampling of five out of the ten snapshots
in the battery, each representing the trajectory of the agent
behavior in the same environment. Snapshots of RE and SU
behavior in test problems are in the bottom two rows. The
top two rows records the agent behavior when controlled by
an UNTRAINED (UN), randomly selected net configuration,
and when controlled by a Q-learning ADAPTIVE (AD) net.
AD is always in learning phase, it is randomly initialized at
the first test in the battery, and retains its net configuration
through subsequent tests in the battery. As AD gets trained
while testing, it is expected to converge to the one of RE.

144

June 17-19, Naples, Italy

Average time to success Average time in goal area

1400 120

100

(NN D

12 3 4 5 6 7 8 12 3 4 56 7 8

&

awerage cycles to goal area
o
=]
5]
% of cycles in goal area

N}
o

environment com plexty environment complexity

Fig. 5. Comparative statistics of reflex effectiveness in reaching the goal

Each snapshots records the trajectory of the corresponding
row agent. Trajectory position points have a time scale color
starting from yellow and going to darker red as time passes.
Test problems in a row are presented in the same order as
they were performed. The order is irrelevant for UN, RE, and
SU, but AD’s behavior changes (and improves) while solving
a problem. For subsequent tests in the battery, AD’s behavior
change gives an idea of how a Q-learning net evolves to a
finally trained RE from an UN.

Figure 5 reports a statistics over the tests performed in
a single test time of 1600 iterations. The first index indicates
ineffectiveness on task achievement, obtained by measuring the
time taken for the agent to reach the goal area. High values
of ineffectiveness are generally associated to wandering be-
havior or stationary dead ends encountered during navigation.
The second index computes effectiveness and persistence, by
measuring time percentage spent inside the goal area after
the area is reached. Low values of the index are generally
associated with excessive random behavior or fortuitous goal
area achievements. The tests are performed on increasing
environment complexity levels, and then growing time needed
to success. UN network shows negative performances on all
tests conditions, while SU network shows the best perfor-
mances especially into low complexity environments, with a
low number of obstacles, moving straight to the goal area
in a few number of cycles, basically focusing on target. RE
shows best performances particularly in high complexity envi-
ronments, proving better explorations capabilities and abilities
to overcome stationary configurations.

Figure 4 reports performance statistics indexes over in-
creasing learning time of AD neural network from 0 to
400.000 learning cycles, increasing by a 50.000 interval. The
progressive trend is evident and demonstrates the adaptive
capabilities of the reinforcement learning protocol. Positive
performance indexes show a clear increasing trend, while
negative performance indexes show a decreasing trend. Perfor-
mance charts show acceleration between 100.000 and 200.000
learning cycles, with inflection points in this interval, and a
final stabilization after 250.000 learning iterations.

A.
IV. CONCLUSION

We presented simulations of the behavior of a mobile agent
equipped with a neural net reflex-like control in avoiding ob-

Proc. of the 16th Workshop “From Object to Agents” (WOA15)

stacles and achieving a given target position goal. At this stage
of the project we use no high level onthologies or primitives
for describing the environment, no environment model or map
acquisition capabilities, and no planning abilities. We imple-
mented the artificial neural net control with two different learn-
ing approaches: a standard supervised error back propagation
training with examples, and an unsupervised reinforcement
learning with environmental feedback. We constructed both
a real robot agent and a virtual agent-environment simulation
system, in order to perform fast and reliable test experiments.
The virtual environment let us perform advanced integrated
training and test sessions with progressive complexity levels
and random configurations, leading to a high grade of general-
ization for the neural net control. We collected statistical data
on several test experiments and compared the performance of
the two learning approaches. The analysis of the control system
critical aspects and capabilities, as observed in the simulations,
favored fixing and improving data presentation in the training
protocol.

REFERENCES

[1] Anvar A.M., Anvar A.P. (2011). AUV Robots Real-time Control Nav-
igation System Using Multi-layer Neural Networks Management, 19th

International Congress on Modelling and Simulation, Perth, Australia.

Awad H.A., Al-Zorkany M.A. (2007). Mobile Robot Navigation Using
Local Model Networks, World Academy of Science, Engineering and
Technology.

Bing-Qiang Huang, Guang-Yi Cao, Min Guo (2005). Reinforcement
Learning Neural Network to the Problem of Autonomous Mobile Robot
Obstacle Avoidance, Proceedings of the Fourth International Conference
on Machine Learning and Cybernetics, Guangzhou.

Chen C., Li HX., Dong D., (2008). Hybrid Control for Robot Naviga-
tion - A Hierarchical Q-Learning Algorithm, Robotics and Automation
Magazine, IEEE, 15(2), 37-47.

Floreano, D., Mondada, F. (1994). Automatic creation of an autonomous
agent: Genetic evolution of a neural network driven robot, Proceedings
of the third international conference on Simulation of adaptive behavior:
From Animals to Animats 3 (No. LIS-CONF-1994-003, pp. 421-430),
MIT Press.

Floreano D., Mondada F. (1996). Evolution of homing navigation in a
real mobile robot, Systems, Man, and Cybernetics, Part B: Cybernetics,
IEEE Transactions on, 26(3), 396-407.

Janglova D. (2004). Neural Networks in Mobile Robot Motion, Inter-
national Journal of Advanced Robotic System, Institute of Informatics
SAS, vol. 1, no. 1, pp. 15-22.

Glasius, R., Komoda, A., Gielen, S.C. (1995). Neural network dynamics
for path planning and obstacle avoidance, Neural Networks, 8(1), 125-
133.

Medina-Santiago A., et. al. (2014). Neural Control System in Obstacle
Avoidance in Mobile Robots Using Ultrasonic Sensors, Instituto Tec-
nolgico de Tuxtla Gutirrez, Chiapas, Mxico. pp. 104-110

Michels J., Saxena, A., Ng, A. Y. (2005). High speed obstacle avoidance
using monocular vision and reinforcement learning, Proceedings of
the 22nd international conference on Machine learning (pp. 593-600),
ACM.

Milln J. (1995). Reinforcement Learning of Goal-Directed Obstacle-
Avoiding Reaction Strategies in an Autonomous Mobile Robot, Robotics
and Autonomous Systems, Volume 15, Issue 4. pp. 275299.

Na, Y.K., Oh, S.Y.,, (2003). Hybrid control for autonomous mobile
robot navigation using neural network based behavior modules and
environment classification, Autonomous Robots, 15(2), 193-206.
Pomerleau D.A. (1991). Efficient Training of Artificial Neural Networks
for Autonomous Navigation, in Neural Computation3: 1. pp. 88-97.
Rogers T.T. , McClelland J.L, (2014). Parallel Distributed Processing at
25: Further Explorations in the Microstructure of Cognition, Cognitive
Science 38, 10241077.

[4]

(31

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

145

June 17-19, Naples, Italy

Rummery G.A., Niranjan M. (1994). On-Line Q-Learning Using Con-
nectionist Systems, Cambridge University.

Tsankova D.D. (2010). Neural Networks Based Navigation and Control
of a Mobile Robot in a Partially Known Environment, Mobile Robots
Navigation, Alejandra Barrera (Ed.), ISBN: 978-953-307-076-6, InTech.
Ulrich 1., Borenstein J., (2000). VFH*: Local Obstacle Avoidance with
Look-Ahead Verification, International Conference on Robotics and
Automation, San Francisco, CA, 28, 2000, pp. 2505-2511

Yang G.S., Chen E.K., An C.W., (2004). Mobile robot navigation
using neural Q-learning, Machine Learning and Cybernetics, 2004.
Proceedings of 2004 International Conference on (Vol. 1, pp. 48-52),
IEEE.

Yang S.X., Luo C. (2004). A neural network approach to complete
coverage path planning, Systems, Man, and Cybernetics, Part B:
Cybernetics, IEEE Transactions on, 34(1), 718-724.

Yang S.X., Meng M. (2000). An efficient neural network approach to
dynamic robot motion planning, Neural Networks, 13(2), 143-148.
Floreano D., Mattiussi C. (2002). Manuale sulle reti neurali, 1l Mulino,
Bologna.

4tronix website, http : //4troniz.co.uk/

HC-SR04 Ultrasonic Ranging Module, Iteadstudio, http

/ Jwiki.iteadstudio.com/Ultrasonic_Ranging_Module_HC-
SR04

Neuroph Framework, Neuroph website,

hitp : //neuroph.sourceforge.net/

RaspberryPi website, hitp : //www.raspberrypi.org

