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1 Introduction

We describe PAGOdA: a highly optimised ‘pay-as-you-go’ reasoning system that
supports conjunctive query (CQ) answering with respect to an arbitrary OWL 2
ontology and an RDF dataset. PAGOdA uses a novel hybrid approach to query
answering that combines a datalog reasoner (currently RDFox [10]) with a fully-
fledged OWL 2 reasoner (currently HermiT [5]) to provide scalable performance
while still guaranteeing sound and complete answers.1 PAGOdA delegates the
bulk of the computational workload to the datalog reasoner, with the extent to
which the fully-fledged reasoner is needed depending on interactions between the
ontology, the dataset and the query. Thus, even when using a very expressive
ontology, queries can often be fully answered using only the datalog reasoner; and
even when the fully-fledged reasoner is required, PAGOdA employs a range of
optimisations to reduce the number and size of the relevant reasoning problems.

This approach has proved to be very effective in practice: in our tests of
more than 2,000 queries over five ontologies, none of which is contained within
any of the OWL profiles, more than 99% of queries were fully answered without
resorting to the fully-fledged reasoner. Moreover, even when the fully-fledged
reasoner was used, the above mentioned optimisations were highly effective: the
size of the dataset was typically reduced by an order magnitude, and often by
several orders of magnitude, and it seldom required more than a single test to
resolve the status of all potential answer tuples. Taken together, our experiments
demonstrate that PAGOdA can provide an efficient CQ answering service in
real-world scenarios requiring both expressive ontologies and datasets containing
hundreds of millions of facts.

The basic approach in PAGOdA has been described in [13, 14, 12], and full
details about the algorithms currently implemented can be found in an accom-
panying technical report.2 In this paper, we provide an overview of the system
and highlight some of the results from our extensive evaluation.

1 In practice we are limited by the capabilities of OWL 2 reasoners, which typically
restrict the structure of the ontology and/or query in order to ensure decidability
(which is open for CQ answering over unrestricted OWL 2 ontologies).

2 http://www.cs.ox.ac.uk/isg/tools/PAGOdA/pagoda-tr.pdf



2 The PAGOdA System

PAGOdA is written in Java and it is available under an academic license.3 As well
as RDFox and HermiT, PAGOdA also exploits the combined approach for CQ
answering in ELHOr

⊥ implemented in KARMA.4 The architecture of PAGOdA
is depicted in Figure 1.

PAGOdA accepts as input arbitrary OWL 2 DL ontologies, datasets in Turtle
format and CQs in SPARQL. Queries can be interpreted under ground or certain
answer semantics. In the former case, PAGOdA is sound and complete. In the
latter case, however, PAGOdA is ultimately limited by the capabilities of Her-
miT, which can only check entailment of ground or DL concept queries; hence,
PAGOdA can guarantee completeness only if the lower and upper bounds match,
or if the query can be transformed into a DL concept query via rolling-up.5 Oth-
erwise, PAGOdA returns a sound (but possibly incomplete) set of answers, along
with a bound on the incompleteness of the computed answer set.

PAGOdA uses four instances of RDFox: one for the lower bound, one for
each upper bound materialisation (c-chase and c-chasef ), and one for subset
extraction. Furthermore, it uses two instances of HermiT (one in each of the
summary filter and dependency graph components).

The process of fully answering a query can be divided into several steps. Here,
we distinguish between query independent steps and query dependent ones. As
we can see in Figure 1, the ‘loading ontology’ and ‘materialisation’ steps are
query independent. Therefore, both of them are counted as pre-processing steps.
‘Computing query bounds’, ‘extracting subset’ and ‘full reasoning’ are query
dependent, and are called query processing steps.

Loading ontology and data. PAGOdA uses the OWL API to parse the input
ontology O. The dataset D is given separately in Turtle format. The normaliser
then transforms the ontology into a set of rules corresponding to the axioms in
O. PAGOdA’s normaliser is an extension of HermiT’s clausification component
[5], which transforms axioms into so-called DL-clauses [11]. The dataset D is
loaded directly into (the four instances of) RDFox.

After normalisation, the ontology is checked to determine if it is inside OWL
2 RL (resp. ELHOr

⊥); if so, then RDFox (resp. KARMA) is already sound and
complete, and PAGOdA simply processes O, D and subsequent queries using the
relevant component. Otherwise, PAGOdA uses a variant of shifting—a polyno-
mial program transformation commonly used in Answer Set Programming [4]—
to enrich the deterministic part of the ontology with some additional information
from disjunctive rules, resulting in a rule set Σ.

Materialisation. There are three components involved in this step, namely
lower bound, c-chase and c-chasef . Each of these takes as input Σ and D, and
each computes a materialisation (shown in Figure 1 as ellipses). The lower bound

3 http://www.cs.ox.ac.uk/isg/tools/PAGOdA/
4 http://www.cs.ox.ac.uk/isg/tools/KARMA/.
5 PAGOdA implements an extension of the well-known rolling-up technique.
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Fig. 1: The architecture of PAGOdA

component first uses RDFox to compute a materialisation of D using the dat-
alog subset of Σ; it then uses the materialised dataset as input to KARMA,
which computes the materialisation ML

2 using the ELHOr
⊥ subset of Σ. The

c-chase and c-chasef components compute the MU
2 and MU

3 upper bound ma-
terialisations using chase-like procedures [1]. The former (MU

2 ) is computed by
over-approximating Σ into datalog; this involves, roughly speaking, transform-
ing disjunctions into conjunctions, and replacing existentially quantified vari-
ables with fresh constants [12]. However, PAGOdA optimises the treatment of
‘Skolemised’ existential rules by not applying them if the existential restriction
is already satisfied in the data. In MU

3 , PAGOdA further optimises the treat-
ment of disjunctions by selecting a single disjunct in the head of disjunctive
rules, using a heuristic choice function that tries to select disjuncts that will not
(eventually) lead to a contradiction.

If ⊥ is derived while computing ML
2 , then the input ontology and dataset is

unsatisfiable, and PAGOdA simply reports this and terminates. If ⊥ is derived
while computingMU

3 , then the computation is aborted andMU
3 is no longer used.

If ⊥ is derived while computing MU
2 , then PAGOdA checks the satisfiability of

Σ∪D (using the optimised query answering procedure described below). If Σ∪D
is unsatisfiable, then PAGOdA reports this and terminates; otherwise the input
ontology and dataset is satisfiable, and PAGOdA is able to answer queries.

Computing query bounds. Given a query q, PAGOdA uses the ML
2 lower

bound materialisation to compute the lower bound answer Lq, exploiting the
filtration procedure in KARMA to eliminate spurious answer tuples (shown as



]axioms ]rules ]∃-rules ]∨-rules ]facts

LUBM(n) 93 133 15 0 n× 105

UOBM(n) 186 234 23 6 2.6n× 105

ChEMBL 2,593 2,960 426 73 2.9× 108

Reactome 559 575 13 23 1.2× 107

Uniprot 442 459 20 43 1.2× 108

Table 1: Test data. Columns from left to right indicate the number of DL axioms,
the number of rules after normalisation, the number of rules containing ∃, the
number of rules containing ∨ and the number of facts in each dataset.

a circle with an ‘F’ in it in Figure 1). If ⊥ was not derived when computing the
MU

3 materialisation, then the upper bound answer Uq is the intersection of the
query answers w.r.t. MU

3 and MU
2 ; otherwise Uq is computed using only MU

2 .

Extracting subsets. If Lq = Uq, then PAGOdA simply returns Lq; otherwise
it must determine the status of the tuples in the ‘gap’ Gq = Uq \Lq. To do this,
PAGOdA extracts subsets of Σ and D that are sufficient to check the entailment
of each such tuple. First, the tracking encoder component is used to compute a
datalog program that tracks rule applications that led to the derivation of the
tuples in Gq. This program is then added to the rules and data in the c-chase
component, and RDFox is used to extend the c-chase materialisation accordingly.
The freshly derived facts (over the tracking predicates introduced by the tracking
encoder) are then passed to the subset extractor component, which identifies the
relevant facts and rules in Σ and D.

Full reasoning. PAGOdA uses HermiT to verify answers in Gq. As HermiT
only accepts queries given either as facts or DL concepts, we have implemented
an extension of the rolling-up technique to internalise CQs as ontology axioms
[7]. In the summary filter component, PAGOdA uses summarisation techniques
inspired by the SHER system to quickly identify spurious gap tuples [2, 3]. The
remaining gap answers G′ ⊆ Gq are then passed to the endormorphism checker,
which exploits a greedy algorithm to compute a (incomplete) dependency graph
between answers in G′. This graph is used by the heuristic planner to optimise
the order in which the answers in G′ are checked using HermiT. Finally, verified
answers from G′ are combined with the lower bound Lq.

3 Evaluation

We have evaluated PAGOdA on a range of realistic and benchmark ontologies,
datasets and queries. Experiments were conducted on a 32 core 2.60GHz Intel
Xeon E5-2670 with 250GB of RAM, and running Fedora 20.6 Further details,
including detailed comparison with other systems, additional experiments, and
results on other ontologies are given in our technical report.

Table 1 summarises our test data. LUBM and UOBM are widely-used bench-
marks [6, 9]. We have tested 10 additional queries for which datalog lower-bound

6 Test data available at http://www.cs.ox.ac.uk/isg/tools/PAGOdA/2015/jair/



answers are not guaranteed to be complete (as is the case for the standard
queries). ChEMBL, Reactome, and Uniprot are ontologies that are available
from the European Bioinformatics Institute (EBI) linked data platform.7 The
ontologies are complex and the data is both realistic and large-scale. We com-
puted subsets of the data using a sampling algorithm based on random walks
[8]. We tested both realistic queries and all atomic queries.

We tested the scalability of PAGOdA on LUBM, UOBM and the ontologies
from the EBI platform. For LUBM we used datasets of increasing size with a step
of n = 100. For UOBM we also used increasingly large datasets with step n = 100
and we also considered a smaller step of n = 5 for hard queries. Finally, in the
case of EBI’s datasets, we computed subsets of the data of increasing sizes from
1% of the original dataset up to 100% in steps of 10%. For each test ontology we
measured pre-processing time and query processing time as described in Section
2. We organise the test queries into three groups: G1: queries for which the
lower and upper bounds coincide; G2: queries with a non-empty gap, but for
which summarisation is able to filter out all remaining candidate answers; and
G3: queries where the fully-fledged reasoner is called over an ontology subset on
at least one of the test datasets. A timeout of 2.5h was set for each individual
query and 5h for all queries.

Our results are summarised in Figure 2. For each ontology, we plot time
against the size of the input dataset, and for query processing we distinguish
different groups of queries as discussed above. PAGOdA behaves relatively uni-
formly for queries in G1 and G2, so we plot only the average time per query
for these groups. In contrast, PAGOdA’s behaviour for queries in G3 is quite
variable, so we plot the time for each individual query.

LUBM(n) All LUBM queries belongs to either G1 or G3 with the latter group
containing two queries. The average query processing time for queries in G1
never exceeds 13s; for the two queries in G3 (Q32 and Q34), this reaches 8, 000s
for LUBM(800), most of which is accounted for by HermiT.

UOBM(n) As with LUBM, most test queries were contained in G1, and their
processing times never exceeded 8 seconds. We found one query in G2, and
PAGOdA took 569s to answer this query for UOBM(500). UOBM’s randomised
data generation led to the highly variable behaviour of Q18: it was in G3 for
UOBM(1) UOBM(10) and UOBM(50), causing PAGOdA to time out in the last
case; it was in G2 for UOBM(40); and it was in G1 in all other cases.

ChEMBL All test queries were contained in G1, and average processing time
was less than 0.5s in all cases. Thus, we have not depicted the scalability of query
processing for ChEMBL in Figure 2.

Reactome Groups G2 and G3 each contained one query, with all the remaining
queries belonging to G1. Query processing time for queries in G1 never exceeded
10 seconds; for G2 processing time appeared to grow linearly in the size of
datasets, and average time never exceeded 10 seconds; the G3 query (Q65) is

7 http://www.ebi.ac.uk/rdf/platform
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Fig. 2: Scalability tests

much more challenging, but it could still be answered in less than 900 seconds,
even for the largest dataset.

Uniprot In contrast to the other cases, Uniprot as a whole is unsatisfiable;
however, our sampling technique can produce a satisfiable subset up to 40%.
For larger subsets, pre-processing times drop abruptly as unsatisfiability can
be efficiently detected in the lower bound. Query processing times were only
considered for satisfiable samples. There were no queries in G3, and only four
in G2, all of which were efficiently handled.

4 Discussion

We have described PAGOdA: a highly scalable and robust query answering sys-
tem for OWL 2 DL ontologies. Our experiments using the realistic ontologies
and datasets in the EBI linked data platform have shown that PAGOdA is ca-
pable of fully answering queries over highly complex and expressive ontologies
and realistic datasets containing hundreds of millions of facts—something that
is far beyond the capabilities of state-of-the-art ontology reasoners.
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