
Evaluation and Optimized Usage of OWL 2
Reasoners in an Event-based eHealth Context.

Pieter Bonte1, Femke Ongenae1, Jeroen Schaballie1, Ben De Meester1, Dörthe
Arndt1, Wim Dereuddre2, Jabran Bhatti2, Stijn Verstichel1, Ruben Verborgh1,

Rik Van de Walle1, Erik Mannens1, and Filip De Turck1

1 Ghent University - iMinds, Gaston Crommenlaan 8, 9000 Ghent, Belgium
Pieter.Bonte@intec.ugent.be

2 Televic HealthCare, Leo Bekaertlaan 1, 8870 Izegem

Abstract This paper evaluates the performance of the OWL 2 reason-
ers Pellet and HermiT in an eHealth context where most of the ABox
is considered static and discrete transient events describing the environ-
ment are incrementally added and processed. The considered use case
is the assignment of tasks and calls to nurses. To provide personalized
and optimized care, the selection process utilizes reasoning to make in-
telligent assignment decisions based on the available information. This
has been implemented using multiple SPARQL-queries to enable easy
adaptation of the assignment algorithm. Since limited time is available
to perform the assignments, the decision should be made in at most five
seconds. An analysis of the performance and scalability of the reasoners
is presented. To deal with the limited time frame, several optimizations
are suggested, which exploit that most of the ABox is considered static.
Keywords: eHealth, Evaluation, Event-based, OWL2 Reasoners

1 Introduction

To provide personalized care for patients, task and call assignment systems ben-
efit from considering as much information as possible. Most of this info can
be considered relatively static, e.g., the patient’s profile and pathology and the
competences of the staff. Discrete events representing tasks, calls and changes
to the environment, e.g., person location updates, are incrementally added and
processed. Scalable reasoning on this static data, which is incrementally up-
dated with event data, is thus required to assign the most appropriate staff to
tasks and calls. The selection procedure, represented as a decision tree, has been
implemented using multiple SPARQL-queries, allowing easy adaptation of the
algorithm. Since the selection procedure should happen as fast as possible, the
allowed decision time has been limited to five seconds by domain experts.

In this paper, the developed task and call assignment reasoning platform
is evaluated in terms of scalability using the OWL-2 reasoners Pellet [10] and
HermiT [8] based on hospital data with an increasing number of wards. Moreover,
several optimizations to speed up the reasoning are proposed and evaluated.
These optimizations are able to deal with the event-based and time-constraint
scenarios and are able to execute the numerous SPARQL-queries efficiently.

2

2 The Scenario

The considered scenario consists of a hospital with wards, containing patients
and care staff. The patients execute calls to receive medical aid. The locations
of the medical staff are automatically tracked. When a patient is in need of
aid, the decision tree is checked to determine the most suited staff member,
based on the patient’s pathology and profile, the location of the care staff, etc.
The scenario consists of following steps, with the performed reasoning actions
between brackets:
Call Launched: A patient launches a call (select nurse)
Call Redirect: The nurse indicates that she is busy (select new nurse)
Call Temporary Accept: The new nurse accepts the call (update call status)
Corridor: The nurse moves towards the room of the patient (update location)
Patient loc: The nurse arrives in the room (update location & turn on lights)
Presence On: The nurse logs into the terminal (update call status & turn on
lights)
Presence Off: The nurse logs out (update call status & turn off lights)
Corridor loc: The nurse leaves the room (update location & turn off lights)

In the considered eHealth use case, the static data consists of the hospital
configuration and profile information of the patients and care staff. The dynamic
data are typically calls by the patients to receive aid, updates of the status of
the call or location updates by the staff.

3 The Accio Ontology

To represent the eHealth knowledge, the ACCIO ontology3 is used. An elaborate
description can be found in Ongenae, et al. [7].

We evaluate the scalability of the OWL 2 reasoners by executing the scenario
over an increasing number of wards. The details of the ontology loaded with the
preliminary data for each number of wards is summarized in Table 1. The loaded
data consists of the configuration of the different wards, including the personnel
and patient information. Note that these are the numbers of the static part of
the ABox. During the scenario, the TBox is considered static.

#Wards: 1 10 25 50 75 100

Axioms 3412 11113 20349 41098 63869 85564
Logical Axioms 2109 8167 15426 32389 49670 66741
Individuals 270 1913 3890 8464 13166 17790
Classes 332
Object Properties 182
Data Properties 51
DL Expressivity SHOIQ(D)

Table 1. Summary of the ACCIO ontology for different number of wards

3 http://users.intec.ugent.be/pieter.bonte/ontology/accio.html

3

4 Implementation

To implement the scenario, we utilized the ModulAr, Service, Semantic & Flex-
ible Platform (MASSIF), a data-driven platform that allows the easy develop-
ment and collaboration of (ontology-based) services. Each service performs a
distinguished reasoning task. Services exchange their knowledge over a Semantic
Communication Bus (SCB) [2]. A detailed description of the MASSIF platform
can be found in De Backere, et al. [1].

Four Services, performing different reasoning tasks, were implemented. These
are elaborated below, in followed by the number of queries needed to implement
their logic.
Presence Service: tracks the location of the staff – #queries: 2.
Status Call Service: tracks the status of the calls – #queries: 4.
Light Service: handles the lights in the patient rooms – #queries: 9.
Help Selection Service: handles the staff assignment – #queries: 200.

Even though the Help Selection Service implements 200 queries, the real
number of executed queries depends on the number of branches that need to be
checked in the decision tree, which represents the nurse assignment algorithm.

The OWL API [4] is used to internally represent the ontology in the MAS-
SIF platform. It provides an OWLReasoner -interface, offering an uniform access
point to various reasoners. In this paper we evaluate the most popular reasoners
implementing the interface. Unfortunately, the OWL API does not provide any
SPARQL support. To resolve this matter a Jena model [5] was used that al-
lows SPARQL queries through Jena ARQ. This model requires synchronization
with the OWL API. Only Pellet is able to convert its internal knowledge base
to Jena. Utilizing HermiT or a more optimized use of Pellet requires a direct
conversion from OWL API to Jena, this is achieved by writing the ontology to
a outputstream in RDF/XML format and reading this stream in Jena.

Different approaches were evaluated for using the reasoners, of which the
distinctive steps are visualized in Figure 1. Two flows can be discerned. A flow
at the top describing the precomputation steps at start-up and one at the bot-
tom describing the reasoning steps during the execution of the scenario. Before
discussing them in detail, we elaborate the on two implemented optimizations
for executing numerous queries in an event-based context.

Figure 1. Workflow depicting the various approaches

4

4.1 Materialization

Materialization is the process of precomputing key sets of implicit assertions in
the knowledge base and is frequently employed by semantic query and reasoning
engines to improve query performance [6]. Doing so requires more storage, but
it allows easy look-up at run-time [9], because it can bypass reasoning when
executing queries. This step is depicted in Figure 1 as (g).

Adding additional event data (ABox) to a materialized ontology requires
realization, i.e., computing the direct types of the added individuals. Based on
a previous classification, the class hierarchy can be used to retrieve all types.

4.2 Subset Reasoning

When adding new individuals to a materialized ontology, subset reasoning re-
trieves a subset of ABox data in such a way that all necessary data to calculate
the types of the new individuals can be achieved with a minimal data set. The
size of the subset is ontology dependent and determined through a precompution
step, which finds the TBox axiom with the largest depth. This is depicted in Fig-
ure 1 as step (h). The depth of an axiom is similar to the modal depth and defines
the deepest nesting of the operators. A formal definition can be found below.
We define the axiom depth as d, R as the roles and C as the concepts.

θ = C|∀R.θ|∃R.θ
d(θ1 ∧ θ2) = max(d(θ1), d(θ2))

d(θ1 ∨ θ2) = max(d(θ1), d(θ2))

d(C) = 0

d(∀R.θ) = 1 + d(θ)

d(∃R.θ) = 1 + d(θ)

(1)

The calculated depth defines the size of the dataset necessary to calculate the
types of new individuals in the materialized ontology. If we view the ontology as
a graph with the individuals as vertexes and the relations as edges, the subset
of data needed to calculate the types is a subtree of the graph with as root the
individual and as depth the calculated axiom depth. If the types of multiple
individuals need to be calculated, a union of subtrees can be considered.

A subset is sufficient to determine the types of an individual. Only the in-
dividuals/literals with whom the given individual has a relation have influence,
considering the calculated depth and the fact that all needed inferred data has
been calculated in a previous materialization step. For this approach to preserve
completeness, the TBox describing the new individuals should be part of an
ontology definition T that can be seen as an extension of the static ontology def-
inition T ′ and if T is local, it does not yield new consequences in T ′. A definition
of locality can be found in Grau, et al. [3]. Transitive relations to leafs in the
subtree could also cause incompleteness, since the transitivity could possibly not
be fulfilled because of the limited data in the subset. However, this never occurs
in our scenario. The maximum axiom depth for the ACCIO ontology is three.

Compared to existing modularization techniques [11], our technique only ex-
tracts ABox data, preserving the TBox allows dynamic and performant extrac-
tion at runtime. Since the ontology has been materialized, the extracted data
can be limited to the data that directly influences the calculation of the new
types. All other data has been inferred in a previous step.

5

4.3 The Approaches

The different approaches used to perform the reasoning are discussed below.
Each approach is depicted in Figure 1 as a sequence of steps.

1. Pellet is used to perform the necessary reasoning each time a query is
executed. Pellet performs the conversion of its internal knowledge base to a Jena
Model each time an event arrives, but is able to cache intermediate results. This
is depicted in Figure 1 as step (a).

2. To eliminate the reasoning at query time, a full materialization of the
ontology is calculated at arrival of an event and translated from the OWL API
to the Jena Model. Jena ARQ allows querying without any reasoning. This is
depicted as step (b) and has been evaluated with the HermiT reasoner.

3. Instead of calculating the whole inferred model each time an event arrives,
the static data is materialized as a pre-computation step. For each individual in
the arriving data, its types are calculated based on the materialized ontology and
the OWL API and the Jena model are incremented with this inferred knowledge.
This is shown as steps (d)-(e)-(c) and has been evaluated with Pellet and HermiT.

4. To determine the types of the arriving events, it is not necessary to analyze
the whole ontology. Starting from a materialized ontology, we compute the subset
of data that has influence on the calculation of the types of the newly arrived
individuals, by utilizing the subset reasoning explained in Section 4.2. This step is
depicted as steps (f)-(d)-(e)-(c) and has been evaluated with Pellet and HermiT.

It is important to note that in approaches 3 and 4, the completeness of
the materialized ontology might become partly lost when the new events yield
consequences in the static data. This is because the calculation of the types of
the event data does not lead to a recalculation of the materialized static data.
However, this is never the case in the eHealth scenario discussed in this paper.

5 Evaluation Set-up and Results

The scalability of the reasoners is evaluated by increasing the number of wards,
resulting in a growing ABox. Each ward consists of 10 rooms, two patients asking
for aid and three nurses. Each approach and each number of wards was evaluated
35 times. The first three and last two results were dropped to eliminated the
influence of the warm-up and cooling down period. The evaluation was done on
a Debian server with an Intel Xeon CPU E5620 2.40GHz with 12 GB of memory.

Figure 2 summarizes the performance of the reasoners. The corresponding
approach is indicated between brackets. On the Y-axis the time to complete the
whole scenario, which contains multiple reasoning steps, is indicated. Evaluating
over the sum of the various scenario steps, allows us to gain a clear understanding
of the different trends for the various approaches. Since the results for Pellet do
not meet the time constraint of five seconds for 1 ward, more than 10 wards were
not evaluated. As for HermiT, materializing the whole ontology every time an
event arrives is not feasible. Since the execution time for ten wards did not come
close to the time constraints, the evaluation was not continued. Approach 3 is

6

0

200

400

600

800

1000

1 10 25 50

ti
m

e
 (

s)

Number of wards

(1)

(3)

(4)

(a) Pellet Reasoner

(2)

(4)

(3)

0

200

400

600

800

1000

1 10 25 50

ti
m

e
 (

s)

Number of wards

(b) HermiT Reasoner

0

2

4

6

8

10

1 10 25 50 75 100

ti
m

e
 (

s)

Number of wards

(4)

(c) HermiT + Subset

Figure 2. Evaluation of the various approaches

more performant than the Pellet approaches but still scales not well because it
takes the whole dataset into consideration when reasoning.

The subsetting approach is the fastest and meets the time constraints. There-
for it is shown in detail in Figure 2 (c). It is clear that the size of the dataset has
limited influence on the reasoning times due to the extraction of the minimal
dataset through subsetting. Partly losing the completeness of the ontology has
huge performance benefits. We therefore analyze these results more in depth in
Figure 3 which visualizes the average times for each service in each scenario step
for a fixed number of wards (here 75). The presented times are the total service
time. For the HelpSelectionService 55% of the time is spent on reasoning, 42%
on quering and less than 3% on conversion. The execution time for the various
scenario steps differ. This is due to the fact that not all steps require the same
amount of reasoning or queries. We can see that the HelpSelectionService takes
the longest in the first two steps, as this service checks the biggest decision tree.

6 Conclusion and Future Work

In this paper the performance and scalability of the HermiT and Pellet reasoner
in an event-based eHealth scenario were evaluated. Scalable reasoning over rel-
atively static data that is incrementally updated with event data is reached by
limiting the data the reasoners need to calculate the types of the event data. It is
clear that partly losing the completeness of the ontology has huge performance
benefits. The technique can be exploited in cases where performance is critical
and where the dynamic part of the ontology which describes the events has no
or limited consequences on the rest of the ontology. Furthermore, it was shown
that HermiT is more performant in calculating the inferred types than the Pellet
reasoner. In future work, we will focus on adapting the subset-algorithm to re-
claim completeness of the whole ontology by incrementally increasing the subset
if possible changes to the static data have been detected.

0

200

400

600

800

1000

1200

a b c d e f g h

ti
m

e
(m

s)

Scenario steps

HelpSelectionService
PresenceService
LightService
StatusCallService
SCB
MASSIF Overhead

a: CallLaunched
b: CallRedirected

g: Presence Off
h: Corridor

c: CallTempAccept
d: Corridor

e: Patient loc
f: Presence On

Figure 3. Evaluation of the HermiT reasoner for the subset approach

7

References

1. De Backere, F., Ongenae, F., Van den Abeele, F., Nelis, J., Bonte, P., Clement, E.,
Philpott, M., Hoebeke, J., Verstichel, S., Ackaert, A., et al.: Towards a social and
context-aware multi-sensor fall detection and risk assessment platform. Computers
in biology and medicine (2014)

2. Famaey, J., et al: An ontology-driven semantic bus for autonomic communication
elements. In: Brennan, R., Fleck, J., van der Meer, S. (eds.) Lecture Notes in
Comput. Sci. vol. 6473, pp. 37–50. Springer Verlag Berlin (2010)

3. Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: A logical framework for modu-
larity of ontologies. In: IJCAI. vol. 2007, pp. 298–303 (2007)

4. Horridge, M., Bechhofer, S.: The owl api: A java api for owl ontologies. Semantic
Web 2(1), 11–21 (2011)

5. McBride, B.: Jena: Implementing the rdf model and syntax specification. In:
SemWeb (2001)

6. Narayanan S, Catalyurek U, K.T.S.J.: Parallel materialization of large aboxes. In:
Symposium on Applied Computing. vol. 2009, pp. 1257–1261

7. Ongenae, F., Bleumers, L., Sulmon, N., Verstraete, M., Van Gils, M., Jacobs, A.,
De Zutter, S., Verhoeve, P., Ackaert, A., De Turck, F.: Participatory design of a
continuous care ontology (2011)

8. OXFORD, U.O.: Hermit reasoner (2014), http://hermit-reasoner.com
9. Rabbi, F., MacCaull, W., Faruqui, R.U.: A scalable ontology reasoner via incre-

mental materialization. Proceedings of CBMS 2013 - 26th IEEE International Sym-
posium on Computer-Based Medical Systems pp. 221–226 (2013)

10. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pel-
let: A practical OWL-DL reasoner. Web Semantics: Science, Ser-
vices and Agents on the World Wide Web 5(2), 51–53 (2007),
http://www.sciencedirect.com/science/article/pii/S1570826807000169

11. Tsarkov, D.: Improved algorithms for module extraction and atomic decompo-
sition. In: 25th International Workshop on Description Logics. p. 345. Citeseer
(2012)

