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Abstract

Automatically identifying the event type of

event-related information in the sheer amount of

social media data makes machine learning in-

evitable. However, this is highly dependent on

(1) the number of correctly labeled instances and

(2) labeling costs. Active learning has been pro-

posed to reduce the number of instances to la-

bel. Though, current approaches focus on the

thematic dimension, i.e., the event type, for se-

lecting instances to label; other metadata such

as spatial and temporal information that is help-

ful for achieving a more fine-grained clustering

is currently not taken into account. Also, label-

ing quality is always assumed to be perfect as

currently no qualitative information is present for

manual event type labeling.

In this paper, we present a novel event-based

clustering strategy that makes use of temporal,

spatial, and thematic metadata to determine in-

stances to label. Furthermore, we also inspect the

quality of the manual labeling in a crowdsourcing

study by comparing experts and non-experts. An

evaluation on incident-related tweets shows that

(i) labels provided by crowdsourcing are of ac-

ceptable quality and (ii) our selection strategy for

active learning outperforms current state-of-the-

art approaches even with few labeled instances.
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1. Introduction

Detecting event-related information in microposts has

shown its value for a variety of domains. Especially in

emergency management, different situational information

is present that could contribute to understand the situation

at hand (Schulz, 2014). However, solving the actual prob-

lem of classifying the incident type in this domain requires

labeled data. One of the main problems with microposts

is acquiring ground truth for utilizing supervised learning.

Thus, we deal with two major issues: (1) The costs for la-

beling a single instance, and (2) the number of instances to

label.

On the one hand, to actually build a classifier that is able

to accurately predict the type of the incident mentioned in

a tweet, usually experts are deployed for labeling as they

have enough domain knowledge to create ground truth.

However, as often several hundreds of examples have to be

labeled until the classifier is able to reach sufficient qual-

ity, relying on experts for labeling is not always possible

and it is costly. In contrast, labels can also be derived from

non-experts, i.e., by making use of crowdsourcing. Given

that the labels obtained in this way are of sufficient quality,

the costs for such a process would be acceptable as crowd-

sourcing is rather cheap. But up to now there is no infor-

mation about labeling quality for incident-related tweets.

Hence, first we proceeded by comparing the labeling qual-

ity of experts and non-experts.

On the other hand, the number of instances to label has to

be kept as low as possible. Due to the huge number of

tweets, labeling all instances is not possible as even with

cheap labeling the costs would explode. Keeping the num-

ber of instances to label low while maintaining accurate
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classifiers is a typical active learning (Settles, 2012) prob-

lem. Here, labeling costs are reduced by iteratively (1) se-

lecting small subsets of instances to query for labels and (2)

re-training a classifier with the newly labeled data. Thus,

in general, but also specifically for classifying microposts,

there are two issues to solve, namely selecting a good initial

training set and the right instances in each iteration.

For selecting appropriate instances, several selection strate-

gies have been proposed based on the two criteria, informa-

tiveness and representativeness (Huang et al., 2010). Infor-

mativeness measures the usefulness of an instance to re-

duce the uncertainty of the model, whereas representative-

ness measures how good an instance represents the overall

input of unlabeled data. The latter usually is solved by em-

ploying clustering approaches where then from each cluster

the representative instances are drawn. Indeed, for event-

type classification the number of clusters to build is not

known in advance, as it is unknown how often an event oc-

curred. Hence, most often it is set to the number of distinct

event types, which obviously is not appropriate. For in-

stance, one event might be a tiny fire in a waste bin whereas

another is a huge fire in a factory; though microposts for

both events need to be classified with the “fire” event type,

state-of-the-art approaches would not distinguish these two

events and thus could not yield an optimal selection of in-

stances to label. For better distinguishing events, a straight-

forward approach is to characterize an event not only by its

type, but also by spatial and temporal information. Pro-

ceeding this way, the two example events are inherently

assigned to different clusters and hence instances to be la-

beled are drawn from both of them.

Consequently, we contribute an event-based clustering ap-

proach that also leverages the temporal and spatial dimen-

sion of tweets to allow a more fine-grained clustering. Due

to smaller clusters the selection of appropriate instances is

easier because one can assume that even with a bad sam-

pling the selected instances will still be of high quality.

The evaluation on incident-related tweets shows that this

enhanced clustering indeed improves the selection com-

pared to state-of-the-art approaches. It is also shown that

our approach has a good performance even when only few

examples are labeled.

In summary, the contributions of this paper are: (1) A study

comparing the labeling quality of experts and non-experts

showing no significant difference of error rates. (2) A novel

event-based clustering approach that makes use of spatial,

temporal, and thematic information present in microposts.

The clustering benefits strongly from these additional di-

mensions. (3) A comparison of our approach using differ-

ent number of annotators and different levels of noise. Even

with a classifier that was not explicitly build to be robust,

noise does not hinder the classifier much.

We begin with summarizing related approaches. Next, we

show how the ground truth data was developed. Then we

summarize the results of the study on crowdsourced labels

(Section 4) followed by a description of the event-based

clustering for active learning. After, the results are shown

and discussed (Section 6) and the paper is concluded.

2. Related Work

Although active learning has been studied extensively for

text classification (Hoi et al., 2006; Tong & Koller, 2002),

it was used for tweets only by a few previous works.

(Thongsuk et al., 2010) presented a technique for classi-

fying tweets into three business types. They showed that

using active learning outperforms simple supervised learn-

ing approaches in terms of labeling costs.

(Hu et al., 2013) presented the ActNeT approach, which

takes the relations between tweets into account for identify-

ing representative as well as informative instances. Based

on a social network, the topology is used to detect repre-

sentative instances using the PageRank algorithm. Infor-

mative instances are chosen using an entropy-based uncer-

tainty sampling. However, as building the social network

is time consuming and not always possible due to API re-

strictions, their approach is not applicable for our problem.

Also, they do not use event-related metadata.

Several selection strategies were presented that propose

to select informative as well as representative instances.

(Tang et al., 2002) used k-means clustering and proposed to

select the most uncertain instance for each cluster. Informa-

tion density was then used to weight instances. (Shen et al.,

2004) applied k-means clustering and uncertainty sampling

and used the information density calculated within a clus-

ter. (Donmez et al., 2007) combined uncertainty sampling

and k-Medoid to identify representative as well as informa-

tive instances and showed that this combination is indeed

beneficial.

The approach of (Zhu et al., 2008) is the most advanced re-

lated approach when it comes to combining representative-

ness and informativeness, thus, we used it as a foundation

for our technique. The authors employed clustering for the

initial selection. Uncertainty sampling is combined with

estimating a density for each iteration. Unlike their work,

we apply our event-based clustering also for the iterations.

(Huang et al., 2010) followed a similar approach. Instances

are selected based on clustering and on confidence in pre-

dicting a class label as informativeness measure. Though

their approach is quite promising, the authors stated that it

is restricted to binary classification, whereas we are able to

classify multiple classes.

Taking labeling quality into account is still open to re-

search. Up to now, there is no study of labeling quality



Event-based Clustering for Reducing Labeling Costs of Incident-Related Microposts

of event-related tweets, but only studies on structured texts

such as the work of (Hsueh et al., 2009). Since 2008, the

active learning community also tackled the problem of dif-

ferent reliabilities of oracles (Donmez & Carbonell, 2008;

Zhao et al., 2011; Wallace et al., 2011). These approaches

have been proposed to take labeling uncertainty into ac-

count and show that repeated re-labeling of wrongly la-

beled tweets could improve label quality and model quality.

Nevertheless, most often synthetic error rates have been as-

sumed.

To sum up, some works tried to combine informative-

ness and representative for selecting instances and showed

promising results. Nevertheless, none of these approaches

has been evaluated on microposts or has taken event-related

metadata into account. Also, no information about real-

world error rates is present or was used in active learning.

3. Developing Ground Truth Data

In this section, we present our dataset used for our evalua-

tion. We focus on incident-related tweets as a specific type

of event-related data. We differentiate between three inci-

dent types in order to classify microposts. These have been

chosen because we identified them as the most common in-

cident types in the Seattle Fire Calls dataset1, which is a

frequently updated source for official incident information.

We also add one neutral class, thus, our final classes are:

car crash, fire, shooting, and no incident.

As there are no publicly available labeled datasets for

event-related microposts, we needed to create our own

high-quality ground truth data. For this, we collected En-

glish microposts using the Twitter Search API. For the col-

lection, we used a 15km radius around the city centers of

Seattle, WA and Memphis, TN. We focused on only two

cities, as for our analysis we were interested in a large

stream of tweets for a specific time period of certain ar-

eas instead of a world-wide scattered sample. This gave us

a set of 7.5M microposts from Nov. 19th, 2012 until Feb.

7th, 2013. Although the datasets have been collected in dif-

ferent time periods, we do not expect any difference in the

way people post about incidents.

As this initial set was used for conducting our experiments,

we had to further reduce the size of the datasets follow-

ing our approach as described in (Schulz et al., 2013b).

The resulting 2,000 tweets were manually labeled by four

domain-experts using an online survey. To assign the final

coding, at least three coders had to agree on a label. In-

stances without an agreement were further examined and

relabeled during a group discussion. The final dataset con-

sists of 328 fire, 309 crash, 334 shooting, and 1029 not

1http://data.seattle.gov

Table 1. Results for the random error evaluated in a study on qual-

ity of crowdsourced labels. Means (µ) and standard deviation

(SD) of the error rates are displayed for each user group.

Random Error

Crowd Expert

µ 0.0338 0.0323

SD 0.0006 0.0002

incident related tweets.2 For our evaluation, we used 1,200

tweets for training and 800 tweets for testing (temporal

split, i.e., the testing instances are later in time than the

training instances). Though this selection might seem arbi-

trary, all compared algorithms rely on the same sampling,

thus, allowing for a fair comparison.

4. Study on Quality of Crowdsourced Labels

In active learning, most often a perfect oracle is assumed

for labeling instances. As this might not hold true in a real-

world environment, we conducted a study on labeling ac-

curacy. When it comes to labeling accuracy, the general

assumption is that labeling quality in crowdsourcing envi-

ronments might be dependent on the domain knowledge of

the annotators (Zhao et al., 2011). Thus, one of the goals of

the study is to analyze if the labeling quality of non-experts

differs significantly from domain experts. To answer this

question, we evaluated two user groups in our study: do-

main experts and regular crowd users with no or limited

domain knowledge. Second, there is no work describing er-

ror rates for labeling of incident-related microposts. Thus,

we want to quantify the error rates, so we can use them for

our simulations. For this, we evaluated the random error,

i.e., the error that results from the annotator carelessness.

E.g., a wrong label is occasionally assigned. The random

error is regarded as i.i.d. noise on each label, thus, we as-

sume a fixed probability RE ∈ [0, 1].

We assume a different labeling quality for crowd users

(CU) and domain experts (EX) and test the following

hypothesis H: The means (µ) of the random error are

different across both user groups (H0 : µRE,CU =
µRE,EX , HA : µRE,CU 6= µRE,EX ).

We created a survey to conduct the labeling of our complete

ground truth dataset according to the incident types. Four-

teen users participated in the study. Eight participants were

crowd users with no or low experience in the crisis man-

agement domain and six users were domain experts with

more than three years experience in the domain. At least

three crowd users and at least two domain experts labeled

each tweet. Based on the results, we calculate the random

error (cf. Table 1) compared to the ground truth labels.

2All datasets will be published at http://www.doc.

gold.ac.uk/˜cguck001/IncidentTweets/
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For evaluating our hypothesis, we first confirmed normal

distribution for all error types and both user groups using

the Anderson-Darling as well as the Shapiro-Wilk Normal-

ity test. Furthermore, we conducted a two-sample F-test

for variances to verify same variances for all combinations

with p < 0.01. For each combination we conducted the

two-sample t-test assuming equal variances. For all com-

binations the null hypotheses could not be rejected with

p < 0.01. Thus, for all error types, we cannot assume a

difference between both user groups. This means that in

our study there is no conceivable difference between do-

main experts and common crowd users.

One reason might be the rather low sample size. Others

might be found in the nature of microposts as they are

short and the amount of available information per tweet is

limited. Thus, the complexity of the information is low

and it is possible to understand the content even as a non-

expert. Furthermore, as tweets are send by lots of different

individuals, the number of domain specific terms could be

rather low compared to specialized texts. Also, as incident-

related tweets are common topics compared to physics or

medicine, people are somehow used to the vocabulary.

To reflect a real-world situation best, we combined the re-

sults of both groups as in typical crowdsourcing studies

both groups might be present. Also, the labels of the ex-

perts are available anyway for our dataset. This gave us a

final error rate of 0.0331 for the random error.

5. Event-Based Clustering

In this section, we show how active learning can be utilized

to classify the incident type of microposts. We also intro-

duce our approach and present how we cope with the initial

selection problem, i.e., how to select the initial training set,

as well as with the query selection problem, i.e., how to

choose appropriate instances for labeling in each iteration.

5.1. Active Learning for Event Type Classification

Active learning is an iterative process to build classification

models by selecting small subsets of the available instances

to label. Two major steps are conducted: (1) a learning

step, where a classifier is built and (2) an improvement step,

in which the classifier is optimized. We follow a pool-based

sampling approach. First, a large number of microposts are

collected as an initial pool of unlabeled data U . From this

information base, a set of training examples L is chosen

for learning an initial model. It is highly important how to

choose this set, because with a well-selected initial training

set, the learner can reach higher performance faster with

fewer queries (Kang et al., 2004).

For training a classifier using this initial set, we reuse the

classification approach presented in (Schulz et al., 2013b).

Here, microposts are processed with standard Natural Lan-

guage Processing (NLP) techniques such as stopword re-

moval, POS-tagging, and lemmatization. Afterwards, sev-

eral features are extracted from the preprocessed instances

such as word-3-grams after POS-filtering, TF-IDF scores,

syntactic features as well as semantic features. The syn-

tactic features are the number of exclamation and ques-

tion marks as well as the number of upper case charac-

ters. The semantic features are a feature group derived us-

ing different means of Semantic Abstraction (Schulz et al.,

2015). Furthermore, the existing approach allows us to ex-

tract a likely date of an event mentioned in a micropost. To

identify the temporal information in a tweet, we adapted

the HeidelTime framework for temporal extraction as pre-

sented in (Schulz et al., 2013b).

As the number of geotagged microposts is rather low (about

1-2%), we reuse an extension of our approach for geolo-

calization (Schulz et al., 2013a) of microposts as well as

for extracting location mentions as features used in the

classification. For geolocalization an estimation of the

city and the country where a tweet was send from was

used and additionally location mentions extracted from the

tweet message were considered. First, we use a Stanford

NER3 model to identify all location mentions. Then, the

discovered locations are geocoded using the geographical

database GeoNames4, and the MapQuest Nominatim API5

for more fine-grained locations, like streets. The intersec-

tion of all locations extracted from the tweet is used as an

estimation of the location where an event mentioned in a

tweet has happened.

After the initial training, the classifier is retrained in several

iterations using newly labeled instances. After each itera-

tion, the labeled instances are removed from the pool of un-

labeled instances U and added to L, thus, more instances

can be used for learning. A selection strategy is used on

U to query labels for a number of instances in each itera-

tion. For coping with this query selection problem, several

strategies can be chosen based on informativeness and rep-

resentativeness (Huang et al., 2010).

For informativeness as selection criteria, uncertainty sam-

pling (Lewis & Catlett, 1994) is commonly applied that

selects particularly those examples for labeling for which

the learner is most uncertain. However, the main issue

with the informativeness approach is that only a single in-

stance is considered at a time (Settles, 2012). Thus, out-

liers could be selected erroneously as the context is not

taken into account. In contrary, clustering helps to identify

representative instances. According to Nguyen and Smeul-

ders (Nguyen & Smeulders, 2004), the most representative

3http://nlp.stanford.edu
4http://www.geonames.org/
5http://developer.mapquest.com
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examples are those in the center of cluster, which are the

instances most similar to all other instances in the clus-

ter. Nevertheless, selecting always the centers of the clus-

ters might result in selecting always very similar instances

for each iteration, thus, the model might not improve very

much. Furthermore, it remains unclear how many clusters

have to be built. Also, the resulting clusters not necessarily

correlate to the real-world events as spatial and temporal

information is neglected.

To overcome the individual problems of each approach, re-

lated work proposes to select the most informative and rep-

resentative instances. This results in selecting the instances

that are representative for the whole dataset as well as have

the highest chance to improve the model. In our approach,

we use metadata provided in microposts to cluster instances

based on both criteria and to choose the most valuable in-

stances for training the classifier. The whole process of

active learning continues until a stopping criteria is met,

e.g., a maximum number of iterations is reached or when

the model does not improve any more.

5.2. Event-based Clustering

Clustering-based approaches are frequently used for iden-

tifying representative instances. However, there might not

be an obvious clustering of event-related data, thus, clus-

tering might be performed at various levels of granularity

as the optimal number of cluster is unknown.

Consequently, we use event-related information such as

temporal and spatial information in combination with the

event type to perform an event-based clustering to take the

properties of real-world events into account. This way, we

are directly able to find a number of clusters without the

need of specifying the number beforehand. Furthermore,

our event-based clustering is based on both selection crite-

ria, so we overcome the limitations of each individual one.

The design of our approach follows the assumption that

every event-related information is either related to a real-

world event or not. Thus, we propose to cluster all in-

stances based on the three dimensions that define an event:

temporal, spatial and thematic extent. As a result, each in-

stance is aggregated to a cluster.

If a micropost lies within the spatial, temporal, and

thematic extent of another micropost, it is assumed

to provide information about the same event. This

assertion can be formalized as a triple of the form

{event type, radius, time}. The spatial extent is a radius

in meters drawn around the spatial location of the event.

The temporal extent is a timespan in minutes calculated

from the creation time of the initial event. The thematic ex-

tent is the type of an event. For example, for our approach

we use the rule {Car Crash, 200m, 20min}, which as-

Algorithm 1 Algorithm for initial selection strategy.

Data: Unlabeled instances U , Clusters C generated by event-based clustering,

Size of initial training set bi
Result: Instances to label L

for all clusters c ∈ C do

for all instances i ∈ c do

Calculate information density DS(i)
end for

end for

for all clusters c ∈ C do

Calculate average information density DSC(c)
end for

Order clusters in C based on DSC
while |L| ≤ bi do

for cluster c ∈ C do

Add one instance from c to L
end for

end while

serts that each incoming micropost of the event type Car

Crash is aggregated to a previously reported incident if it is

of the same type, within a range of 200 meters, and within a

time of 20 minutes. Clearly, altering the radius or the time

will have a strong effect on the final clustering. However, as

emergency management experts suggested to use these val-

ues, we did not change them. Inspecting the effects of dif-

ferent parameterizations remains subject for future work,

however, we are confident that our proposed approach is

not affected negatively by a change of these parameters.

With the help of these three assertion types, a rule engine

computes whether microposts are clustered as they describe

the same event or not.

Microposts containing no thematic information are as-

signed the unknown event type. Missing spatial informa-

tion is replaced with a common spatial center (the center

of a city). Missing temporal information is replaced with

the creation date of the micropost. Thus, even with one or

two missing dimensions, we are still able to build clusters.

Based on this clustering approach, we are able to cluster all

microposts related to a specific event. This helps to identify

those microposts that might be helpful for better training.

Opposed, microposts not related to events are assigned to

larger clusters, containing lots of noise and being less valu-

able for the learning process.

5.3. Initial Selection Strategy

The initial dataset that needs to be labeled is selected first.

Related approaches rely on random sampling or clustering

techniques (Zhu et al., 2008). However, this does not guar-

antee the selection of appropriate instances, because the

initial sample size is rather small, whereas the size of the

clusters is large. In contrast, event-based clustering uses the

properties of real-world events to perform an initial cluster-

ing.

Our approach for selecting the initial dataset is shown in

Algorithm 1. Based on the set of clusters resulting from our



Event-based Clustering for Reducing Labeling Costs of Incident-Related Microposts

event-based clustering, the most representative instances

for the complete and unlabeled dataset are identified for

training the initial model. For this, we use the event clus-

ters ordered by information density of their containing in-

stances to obtain a good initial set. Selecting informative

instances clearly is not possible yet, as a classifier cannot

be trained at this point. In the following, we describe the

algorithm in detail.

First, our clustering approach is applied on the complete

unlabeled set U without a thematic specification as this is

not present yet. Thus, the unknown event type is used.

Second, for all instances in each cluster the information

density is calculated. This is done based on how many in-

stances are similar or near to each other, thus, outliers are

regarded as less valuable. We used a k-Nearest-Neighbor-

based density estimation (Zhu et al., 2008): DS (x) =∑
s∈S(x)

Similarity(x,s)

k

The density DS(x) of instance x is estimated based on

the k most similar instances in the same cluster6 S(x) =
{s1, s2, ..., sk}. As a similarity measure, we use the cosine

similarity between two instances. The information density

DSC of each cluster c is then calculated based on the aver-

age of the information density of each instance as follows:

DSC (c) =

∑
x∈c

DS(x)

k

Doing this, we are able to avoid noisy clusters with lots of

unrelated items, which would typically be clusters not re-

lated to an event. Based on DSC(c) the clusters are sorted.

Then we iterate over the ordered list and select instances

until bi (initial training size) instances are selected. Pro-

ceeding this way, we achieve a good distribution over all

valuable event clusters as it is guaranteed that the instances

are selected from the most representative clusters. Based

on these instances, the initial model is build.

5.4. Query Selection Strategy

For the query selection strategy we choose representative

using clustering as well as informative instances using

uncertainty-based sampling. The pseudo-code is shown in

Algorithm 2. In every iteration, the classifier trained on the

currently labeled instances is applied to label all unlabeled

instances. As a result, every instance is assigned a thematic

dimension. Based on this, the event clustering is applied

using the spatial, temporal, and thematic information re-

sulting in a set of clusters C.

Next, for the query selection strategy, we calculate the in-

formation density DS per instance. For identifying in-

formative instances, we use the instances for which the

classifier is most uncertain. As an uncertainty measure

the entropy calculated for each instance x and each class

6k is equal to the number of instances in the cluster.

Algorithm 2 Algorithm for one iteration of the query se-

lection strategy.

Data: Unlabeled instances U , Labeled instances L, Clusters C generated by

event-based clustering, Number of instances to label per iteration bi, Trained

Model for iteration M , Mean average size of all cluster in iteration ms
Result: Instances to label L

Use L to train classifier M
for all clusters c ∈ C do

for all instances i ∈ c do

Calculate information density DS(i)
Calculate entropy H(i) using M
Calculate density×entropy measure DSH(i)

end for

end for

for all clusters c ∈ C do

Calculate DSHC(c)
end for

Order clusters based on DSHC
while |L| ≤ bi do

for all clusters c ∈ C do

n = logms(|c|)
Add n instances from c to L

end for

end while

y ∈ Y = {y1, y2, ..., yi} was employed: H(x) =
−
∑

yǫY P (y|x) logP (y|x)

Based on the information density and the entropy, the

density×entropy measure DSH(x) = DS(x) × H(x)
(Zhu et al., 2008) is calculated for each instance x. The in-

formativeness and representativeness of each cluster is then

computed based on the mean average of DSH of each in-

stance i in the cluster c: DSHC (c) =

∑
i∈c

DSH(i)

|c|

For selecting the appropriate instances to query, the clusters

are sorted by the DSHC of each cluster. The number of in-

stances to draw per cluster is calculated as n = log(ms)CS.

To determine how many instances have to be selected per

cluster (n), we calculate the average size of all clusters ms

and the size of the current cluster CS. We decided to use a

logarithmic scale by using a logarithm at basis ms to avoid

drawing too many instances from larger clusters as would

be the case with a linear approach. We assume that draw-

ing only small numbers per cluster is sufficient, as at some

point additional instances will not yield any additional in-

formation, as the instances will be too similar to each other.

Instances are selected until the number of instances to la-

bel per iteration is reached. Based on the previous and the

new instances the model is retrained. The whole process is

repeated until all iterations are finished.

6. Experiments

We conducted two experiments regarding incident type

classification. First, we compared related approaches

to show that event-based clustering outperforms other

clustering-based active learning approaches. Additionally,

the effect of the number of labeled instances on the clas-

sifier performance is examined. In the second experiment,
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(a) ground truth data

b) 1 user with noise
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(b) one annotator

c) 5 users with noise
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(c) five annotators

e) 20 users with noise
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(d) 20 annotators

f) 50 users with noise
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(e) 50 annotators

h) 200 users with noise
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(f) 200 annotators

Tang et al. Uncertainty Sampling Event-based Clustering Zhu et al.

Figure 1. Evaluation results of state-of-the-art selection strategies and our approach. The graphs for different number of annotators

(regular crowd users) are shown. Note that the more annotators labeled an instance the lower is the probability for a noisy labeling.

the influence of noise is inspected. Noise results from a

low number of non-expert labelers. For keeping costs low

a classifier should not be affected by a bad labeling.

6.1. Classification and Metrics

The active learning algorithms select instances from the

training set to query for labels. Based on these, a classi-

fier was trained and evaluated on the test set. As classifier

we used Weka’s implementation of John Platt’s sequential

minimal optimization (SMO) algorithm for training a sup-

port vector machine (Platt, 1998). Due to the complexity of

determining best parameters for each iteration and each ap-

proach, we followed related approaches (see (Huang et al.,

2010) and (Donmez et al., 2007)), and decided to compare

all algorithms on fixed parameters. Consequently, the SVM

was used with standard settings.

For comparison, the deficiency metric (Raghavan et al.,

2006) is calculated using the achieved F1 score of all it-

erations of a reference baseline algorithm (REF) and the

compared active learning approach (AL). The result is nor-

malized using the largest F1 score and the learning curve

of the reference algorithm REF. Thus, the measure is non-

negative and values smaller than 1 indicate more efficient

algorithms compared to the baseline strategy, whereas a

value larger than 1 indicates a performance decrease com-

pared to the baseline strategy.

6.2. Algorithms and Parameters

In order to evaluate the performance of our approach, we

re-implemented the following related approaches:

(Tang et al., 2002): For initial sampling a k-means clus-

tering is used. For query selection, first the most uncertain

instances for each cluster are selected. Then, information

density is used to weight the examples. We set k = 4,

because we have four different event types.

(Zhu et al., 2008): For initial sampling a k-means cluster-

ing is used (k = 4). During the iterations, the entropy ×
density measure is used as selection criteria and no cluster-

ing is applied.

Uncertainty: Random instances (initial) and the entropy-

based uncertainty sampling (iterations) is used.

Event-based clustering: Our event-based clustering is ap-

plied with a spatial extent of 200m and a temporal extent

of 20min.78

Following the experimental settings of (Hu et al., 2013) and

(Huang et al., 2010), we set the size of the initial train-

ing set and the size during the iterations to 50. No further

tuning or parameterization was applied. Each iteration for

7As a result, the 1,200 tweets of the training set are divided
into 438 distinct event clusters.

8The spatial and temporal extent are a result of discussions
with emergency managers.
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Table 2. Deficiencies with Tang et al. as a baseline strategy.

Approach Deficiency

(Tang et al., 2002) 1
Uncertainty Sampling 0.53

(Zhu et al., 2008) 0.90
Event-based Clustering 0.44

each algorithm was repeated 10 times, as for instance, the

uncertainty approach is highly dependent on the selected

instances. We used averaged F1 based on the repetitions.

6.3. Comparison to state-of-the-art approaches

The performance graph for the ground truth data is shown

in Figure 1 (a). Note that the x-axis shows the total num-

ber of instances combining the 50 instances of the initial

training set and 50 instances drawn per iteration. Thus, it-

erations from 0 to 23 are depicted. As shown, the perfor-

mance after selecting the initial training set is superior with

our approach. Also, in regions where only a few instances

were labeled, the event-based clustering has a higher F1

value. This shows that a high-quality selection of the itera-

tion instances is possible with our method.

Table 2 shows the deficiencies. With respect to the perfor-

mance of the iterations, our approach has a decreased de-

ficiency compared to other clustering approaches (0.44 vs.

0.53). The approach of Zhu et al. outperforms the approach

of Tang et al. in most iterations and also with respect to the

deficiency. We attribute this to the improved strategy for

query selection. A surprising result is the performance of

uncertainty sampling that outperforms the other two clus-

tering strategies. Apparently, only focusing on the infor-

mativeness seems to be a good strategy for our dataset. In

contrast, using the number of distinct events as the number

of clusters might not be the most efficient approach.

The graph also shows that our approach has a steep learn-

ing curve as for instance only a sixth of all instances are

needed to achieve a F1 score of about 84%. This is espe-

cially important when it comes to labeling costs, as only a

limited amount of data would need to be labeled. One can

see a drop at 500 instances. This is most likely because

with more instances the number of clusters is decreasing,

thus, selecting appropriate instances is more difficult.

We can conclude that event-based clustering that takes rep-

resentative as well as informative instances into account is

a promising strategy for active learning. We also showed

that our approach outperforms state-of-the-art for selecting

an initial training set and for choosing appropriate instances

for labeling in each iteration.

Influence of noise in the labels In Figure 1 (b) and 1 (c),

the learning curves for the very error-prone cases with one

respective five annotators are shown. As can be seen in the

curve of the approach of Tang et al., the influence of noise is

notable in the big drop with 500 instances. Also Zhu et al.’s

approach has a much lower initial F1 score compared to

all others, which is an indicator for an inappropriate initial

selection strategy. The results indicate that even with noisy

labels, our approach outperforms the state-of-the-art as the

situation in the graphs of the lower part of Figure 1 does

not change much. In all these cases, the learning curves are

quite similar, which is a result of the decreased number of

wrongly labeled instances. Clearly, the performance of all

approaches increases with a lower number of errors.

As we showed, our approach outperforms related work also

if noise is taken into account. Not surprisingly, we found

that with an increasing number of annotators, noise is neg-

ligible. With only one annotator, the deficiency is worse

by 57% and with five annotators still worse by 26%. Even

with 50 annotators, the deficiency still is worse by 10%.

For more than ten annotators, an F1 score of 85% is reached

comparably fast. With a maximum of five annotators, this

level is only reached at the end of the simulation. For one

annotator, this maximum is never achieved. These results

indicate that a minimum number of annotators is needed for

achieving good results by crowdsourced labeling tasks. In

our experiments, ten annotators seem to be sufficient, while

in other domains with different error rates, there might be

a need for much more annotators.

7. Conclusion

We presented an event-based clustering strategy for event

type classification of microposts and coped with several

problems of active learning in the emergency management

domain. First, it was shown that domain experts do not dif-

fer significantly from regular crowd users when it comes

to labeling quality. Second, we presented a novel selection

strategy for active learning based on temporal, spatial, and

thematic information. Our event-based clustering that iden-

tifies representative as well as informative instances outper-

forms state-of-the-art clustering approaches. On incident-

related microposts we showed that a better initial training

set is selected as well as to appropriate instances for la-

beling in each iteration are chosen. The learning curve

indicated that only a sixth of all instances are needed to

achieve a F1 score of about 84%, which is especially im-

portant when it comes to labeling costs, as only a limited

amount of data would need to be labeled to achieve good

classification results.

In the future, we aim at using our active learning frame-

work in addition to labeling of single features. Further-

more, though our framework follows a general approach,

we only evaluated it on incident-related data, thus, we also

want so show the applicability on other types of events.
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