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Abstract

Detecting traffic events using the sensor network

infrastructure is an important service in urban en-

vironments that enables the authorities to han-

dle traffic incidents. However, irregular mea-

surements in such settings can derive either from

faulty sensors or from unpredictable events. In

this paper, we propose an efficient solution to

resolve in real-time the source of such irregu-

lar readings by examining the correlation and the

consistency among neighbor sensors and exploit-

ing the wisdom of the crowd. Our experimental

evaluation illustrates the efficiency and practical-

ity of our approach.

1. Introduction

Sensor network infrastructures have been widely used for

traffic management in smart cities to provide important ser-

vices for the benefit of pedestrians, cyclists, motorists and

public transport. Such services are typically provided by

analyzing data provided by heterogeneous static and mo-

bile sensors. This enables the implementation of numerous

applications like proposing alternative routes, altering traf-

fic lights, etc.

The most common type of sensor which is utilized in such

environments is the SCATS sensor. They are static sensors

embedded at the city roads providing rich, real-time infor-

mation such as traffic flow measurements based on vehicles

that cross a specific segment. Despite their utility in many

traffic applications, SCATS sensors can be faulty. Thus,

one fundamental challenge in these settings is how to ef-

ficiently distinguish between irregular and faulty measure-

ments before taking any unnecessary actions.
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Automatic identification of anomalies in streaming data is

an emerging field of research due to the large number of

applications (intrusion detection, event identification, etc).

Many algorithms that utilize machine learning and time se-

ries analysis techniques have been successfully applied for

the detection of unexpected events during the last years (Yi

et al., 2000). These methods offer high quality results and

are able to perform on massive data streams in real-time.

An interesting use-case is the automatic analysis of traffic

data generated by Smart Cities infrastructures. Human per-

sonnel are unable to monitor and efficiently identify prob-

lems on these data. The utilization of anomaly detection

techniques would provide great assistance to traffic opera-

tors as it would enable the automatic real-time identifica-

tion of traffic issues.

Recently, Crowdsourcing has emerged as an attractive

paradigm to exploit the intelligence of ubiquitous human

crowd (citizens) to extract useful information. Traditional

Crowdsourcing systems such as AMT1, CrowdFlower2,

etc., constitute marketplaces for human intelligence tasks

(HITs), that allow a requester to define a task, which is per-

formed by other human workers in exchange for a reward.

For example, mobile human workers with different char-

acteristics can be queried for geo-located tasks to extract

real-time information without needing an expensive infras-

tructure(Boutsis & Kalogeraki, 2014).

In this paper we develop an efficient approach that identi-

fies faulty readings from traffic sensors by examining the

correlations among them and by taking advantage of the

ubiquitous citizens through Crowdsourcing. We summa-

rize our contributions below:

• We present an efficient approach that identifies

anomalous sensors and uses Crowdsourcing to resolve

whether irregular measurements are due to faulty sen-

sors or irregular traffic.

1http://www.mturk.com/
2http://www.crowdflower.com/
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Figure 1. The SCATS sensors locations at Dublin’s city centre

• We tackle the problem of automatically detecting

anomalous SCATS sensors with three methods: (i)

Pearson’s correlation, (ii) cross-correlation and (iii)

multivariate ARIMA model. The proposed methods

have to tackle the task efficiently in real-time.

• We develop our approach using the Lambda-

Architecture which combines a batch processing

framework (i.e. Hadoop3) and a distributed stream

processing system (i.e. Storm4) for efficiently pro-

cessing both historical and real-time data.

• We develop a Crowdsourcing system used to extract

answers from the human crowd based on the MapRe-

duce paradigm.

• We provide an experimental evaluation, which illus-

trates that our approach is practical and can effectively

identify irregular measurements in real-time.

2. Problem Description and System Model

2.1. Smart City

Smart cities exploit digital sensor devices that can be either

embedded at the city infrastructure or they can be mobile

(e.g., smartphones) in order to provide services for their cit-

izens that enhance their well-being. Such services may re-

late to traffic management, housekeeping information, etc.

In this paper we focus on Dublin, a smart city that uti-

lizes sensors for supervising and managing road traffic

(Kinane et al., 2014). In Dublin the traffic is controlled

by the Dublin City Council (DCC), which is responsible

to develop, maintain and manage the city road network.

To achieve that they exploit several heterogeneous data

sources that include: (i) SCATS sensors which are em-

bedded on the road and monitor real-time traffic density,

(ii) GPS traces from sensors embedded on buses, (iii) the

3https://hadoop.apache.org/
4https://github.com/nathanmarz/storm

LiveDrive radio where users can report traffic, and (iv)

pedestrian counters.

2.2. System model

In this section we provide our system model for the data

sensors that we examine, namely the SCATS sensors and

Crowdsourcing.

SCATS Sensors. SCATS (Sydney Coordinated Adaptive

Traffic System) is an innovative computerized traffic man-

agement system developed by Roads and Maritime Ser-

vices (RMS) Australia. SCATS sensors are fixed mag-

netic sensors deployed on intersections to measure the traf-

fic flow and the degree of saturation of roads’ lanes. In

Dublin city, each SCATS sensor produces and transmits a

new record every minute. Each record contains information

related to the timestamp t of the measurement, the sensor’s

ID i and finally the degree of saturation and traffic flow

measurements. In the provided dataset there are approxi-

mately 300 SCATS controlled intersections and 1000 dif-

ferent SCATS sensors throughout the road network. The

GPS locations of the SCATS sensors are presented in Fig-

ure 1. Degree of saturation measures how much a road’s

lane is utilized, while traffic flow measures the vehicles’

volume divided by the highest volume that has been mea-

sured in a sliding window of a week5. In this work we

decided to monitor the degree of saturation value, noted as

s, as it more reliable and informative than the traffic flow.

The degree of saturation of a particular SCATS sensor with

ID i at the timestamp t is noted si,t.

Crowdsourcing. Our crowdsourcing system comprises a

set of human workers denoted as wj which are able to re-

ceive task assignments. Tasks are being inserted to the sys-

tem by an authority, such as the DCC. Each task tk is as-

sociated with a number of attributes as < idk, latitudek,

longitudek, rewardk, descriptionk >. Hence, every

task posses a unique identifier (idk), the geographical co-

ordinates of the location that the task involves (latitudek,

longitudek), the corresponding reward (rewardk) for ex-

ecuting the task and a task description that describes the in-

formation that needs to be provided by the human worker.

An example of such a task description is: “Is there traffic

in O’Connell Street? Yes/No”. Finally each response pro-

vided by a worker is captured with a record by our system

using the worker and the task identifiers, coupled with the

response as follows: < wj , idk, responsejk >.

3. Architecture

In Figure 2 we display our system architecture which

consists of the following components: (i) a Distributed

5http://dublinked.com/datastore/datasets/

dataset-274.php
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Figure 2. System Architecture

Stream Processing System (DSPS), (ii) a batch processing

framework, (iii) a distributed database system, and (iv) the

Crowdsourcing component that consists of the users’ mo-

bile devices. Our architecture is an instance of the Lambda-

Architecture6 as we exploit the fast processing offered by

DSPS and the fault-tolerance and parallelism provided by

current batch processing frameworks.

Incoming SCATS-sensor data are forwarded to a stream

processing graph. These data are pre-processed and stored

in the Distributed Database (i.e. Preprocessing component

in Figure 2) for further processing by the batch processing

component. We analyze the reported metrics via the Anal-

ysis component which examines if one of the sensors de-

viates significantly from its neighbors so it could possibly

be a faulty sensor. This component uses both the current

conditions and historical data for identifying such condi-

tions. In case that one such sensor is detected, the Analysis

component informs the Crowdsourcing component about

this situation. The latter is responsible to send the appro-

priate Crowdsourcing tasks that will enable us to detect if

the sensor is a faulty-one. Finally, the batch processing

component periodically computes new statistics about the

historical sensor data.

There are multiple DSPSs which support low latency pro-

cessing in real-time. Some of these systems are Apache

Storm, Spark Streaming7 and TUD-Streams (Bockermann

& Blom, 2012). We used Storm as the DSPS that will

perform the real-time processing of incoming sensor data.

Storm is one of the most commonly used DSPS, and is sup-

ported by major companies such as Twitter8. It has been

successfully applied for processing high volume of data in

different application domains, achieving high throughput

6lambda-architecture.net
7https://spark.apache.org
8http://twitter.com

and low response latencies (McCreadie et al., 2013). Fur-

thermore, we decided to use Storm due to its scalability fea-

tures that we also exploit in our previous work (Zygouras

et al., 2015). Storm users can change the parallelism of

the processing components to adapt to possibly workload

bursts.

Finally, for the analysis of the historical sensor data we

used the most commonly used open-source implementation

of the MapReduce programming model, Hadoop. We ex-

ecute periodical (i.e. at the end of each day) Hadoop jobs

for computing the basic metrics required by our proposed

techniques, described in more detail in Section 4. Our jobs

retrieve historical data from a distributed database, more

specifically MongoDB9. We decided to use MongoDB in-

stead of the Hadoop Distributed Filesystem (HDFS), as we

want to have fast access to the data from the DSPS compo-

nent of our architecture, for computing and storing short-

term statistics in real-time.

4. Methodology

The goal of this work is to monitor the streaming traf-

fic data and automatically pose Crowdsourcing tasks when

anomalous sensors are identified. In order to identify

anomalous sensors we propose three different outlier tests

that examine whether the SCATS sensors behave differ-

ently from their normal behavior. These outlier tests

are based on the following statistical measurements: (i)

Pearson’s Correlation (ii) Cross-Correlation and (iii) the

ARIMA Model. The normal behavior for each sensor is

calculated offline using the historical data. These meth-

ods are implemented using the Lambda architecture and

Crowdsourcing tasks are assigned to users when anoma-

lous SCATS sensors are identified.

4.1. Identifying Anomalous Sensors

In this section we describe the three statistical measure-

ments that are used and we explain how these are utilized

to detect anomalous SCATS sensors. Initially we applied a

simple statistic measurement named Pearson’s correlation

that identifies the correlation between pairs of SCATS sen-

sors. Then we used an extension of the first method, named

cross-correlation, to identify how many lags we should

shift backward a sensor’s values to maximize its pairwise

correlation with another adjacent sensor. The first two ap-

proaches use two well known measures in time series anal-

ysis. The disadvantage is that they check pairs of sensors

and not the group of sensors as a whole. For this reason we

applied a third approach that can be thought as a multivari-

ate ARIMA model which deals with the aforementioned

problem and is faster than the other approaches.

9http://www.mongodb.org/
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4.1.1. PEARSON’S CORRELATION

The Pearson’s correlation coefficient is a well known statis-

tic that measures the linear relationship of two variables X

and Y . It takes values in [−1, 1], where 1 means that the

variables are positively correlated, −1 stands for negative

correlation and 0 for no correlation between X and Y . The

Pearson’s correlation, noted ρX,Y , is calculated by dividing

the covariance of X and Y with the product of the standard

deviations of X and Y (see Equations 1 and 2).

ρX,Y =
cov(X,Y )

σXσY

(1)

cov(X,Y ) = E[(X − µX)(Y − µY )] (2)

In our scenario we calculated the pair-wise correlation be-

tween all SCATS sensors X and Y whose spatial distance

does not exceed a predefined threshold. This restriction

creates a sparse correlation matrix that contains non-zero

elements when SCATS sensors are spatially adjacent. We

calculate the sparse correlation matrix from the historical

data. Then, utilizing the streaming data that arrive contin-

uously in our system we periodically calculate the stream-

ing correlation of the adjacent SCATS sensors. We note as

noisy sensors’ pairs those that their streaming correlations

disagree significantly with the correlations calculated from

the historical data. If a particular sensor disagrees signif-

icantly with the majority of his neighbors then a crowd-

sourcing task is posed.

4.1.2. CROSS-CORRELATION

Cross-correlation is a statistical measure of similarity be-

tween two variables X and Y as a function of the lag of one

relative to the other. More specifically cross-correlation be-

tween X and Y is calculated by shifting forward or back-

ward Y and calculating its correlation coefficient with X .

Cross-correlation with lag d, noted ρX,Y (d), is calculated

as seen in Equation 3. The numerator of the equation calcu-

lates the covariance of X and Y shifted d time bins back-

ward. Finally the denominator is the product of the stan-

dard deviations of X and the lagged Y .

ρX,Y (d) =

∑

i[x(i)− µX)(y(i+ d)− µY )]
√

∑

i(x(i)− µX)2
√
∑

i(y(i+ d)− µY )2

(3)

A traffic anomaly at a particular location, in a road net-

work, may require some time in order to be propagated to

the adjacent sensors. This observation motivates us to con-

sider the cross-correlation between adjacent SCATS sen-

sors. More specifically we calculated the dmax that maxi-

mized the correlation between two adjacent sensors X and

Y (see Equation 4).

dmax = argmax
d

(ρX,Y (d)) (4)

In order to identify anomalies with cross-correlation we

followed a similar approach to the one utilizing the Pear-

son’s correlation measure, described before. The main dif-

ference is that we identified, using historical data, the lag

dmax that maximized the correlation between two SCATS

sensors X and Y . In the streaming analysis in order to cal-

culate the cross-correlation between the sensors we shifted

dmax lags backward the Y and we calculated its correla-

tion with X . Finally, we measured how much the streaming

cross-correlation deviates from the offline calculated cross-

correlation between X and Y using the optimal lag value

dmax.

4.1.3. MULTIVARIATE ARIMA MODEL

A common strategy to detect outliers in multivariate time

series (Yi et al., 2000) is to build a regression model for

each time series and evaluate whether the actual values vary

significantly from the predictions. The model receives as

input the previous L degree of saturation measurements for

a particular sensor with ID = 0 and the sensor’s N nearest

SCATS sensors {si,j : i ∈ [0, N ], j ∈ [0, L], i, j ∈ Z}.

The goal of the model is to make the best prediction for

s0,t, denoted as ˆs0,t. The model is presented in detail in

Equation 5. This model can be thought as a multivariate

ARIMA model, as multiple sensors are used in order to

make the predictions.

ˆs0,t =φ0,1s0,t−1 + · · ·+ φ0,Ls0,t−L+

φ1,0s1,t + φ1,1s1,t−1 + · · ·+ φ1,Ls1,t−L+

. . .

φN,0sN,t + φN,1sN,t−1 + · · ·+ φN,LsN,t−L

(5)

In the training phase we use the historical degree of sat-

uration values in order to calculate the coefficients Φ of

Equation 5. In order to solve this problem we created the

matrix A and vector b containing the input data (degree of

saturation values) and the target values respectively. The Φ
parameters are the values that optimally solve Equation 6.

The solution of this system is given with the pseudo-inverse

transformation of the input presented in Equation 7. The

key property of this approach, in contrast to the two pre-

viously described techniques, is that it monitors the differ-

ent sensors together as a whole. The Pearson’s correlation

and the cross-correlation approaches investigated only pair-

wise correlation between SCATS sensors, ignoring poten-

tially useful information. On the other hand, the ARIMA-

based method aims at exploiting this information.

Φ = [φ0,1 . . . φ0,L . . . φ2,0 . . . φ2,L]

A =









s0,t−1 . . . s0,t−L . . . sN,t . . . sN,t−L

s0,t−2 . . . s0,t−L−1 . . . sN,t−1 . . . sN,t−L−1

...
. . .

...
. . .

...
. . .

...
s0,L . . . s0,0 . . . sN,L . . . sN,0








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b = [s0,t . . . s0,L+1]
⊤

b = AΦ (6)

Φ̂ = (ATA)−1AT b (7)

In order to integrate this approach we split the historical

data in training and test set. Initially we calculated of-

fline, using the training set, the Φ̂ parameters. These pa-

rameters are the coefficients regarding the sensor’s previ-

ous measurements and its adjacent sensors’ past measure-

ments. Then we calculated how well the data fitted to these

models computing for each sensor its Mean Absolute Er-

ror (MAE). Finally, in order to identify anomalous SCATS

sensors while monitoring the streaming data we compute

for each sensor its MAE at a particular time window. We

label a sensor as ‘anomalous’ if its streaming MAE notice-

ably differs from its MAE measured using the testing set.

4.2. Implementation

Our system calculates the correlation among adjacent

SCATS sensors. This is achieved by adding the SCATS

sensors’ GPS locations in a k-d tree data structure during

system initialization and calculating the k nearest SCATS

sensors for each sensor. Furthermore, we developed our

system using the Lambda architecture. So we should en-

sure that the required data are transmitted to the appropriate

cluster nodes. Thus, we created a mapping of each SCATS

sensor ID to one or more cluster nodes. This guarantees

that each computing node contains all the required data for

a sensor’s adjacent sensors.

We define three parameters that help us configure the com-

ponents of our system. The first one is job periodicity

and defines when the batch jobs should re-execute (e.g.

each day, every week). The other two control the

stream processing computations. More specifically, the

stream threshold parameter defines how often we should

re-compute the examined metrics (e.g. every ten minutes),

while time window defines the sliding time window (e.g.

the previous hour) that will be used for keeping the past

sensor data necessary for the computations.

As we described in Section 3, we periodically invoke

Hadoop jobs that compute the different metrics we ex-

plained in Section 4.1. Map tasks read the pre-processed

sensor data from the MongoDB, and send them to the re-

duce tasks. We partition the data based on the SCATS sen-

sor ID to cluster node mapping. The idea is that neigh-

boring sensors should always end up on the same reduce

task in order to appropriately compute the examined met-

rics. Each sensor may belong to more than one nodes in

such cases we send the tuple multiple times (i.e. equal to

the number of nodes it is part of) to avoid information loss.

Figure 3. Crowdsourcing Application (a) Main Application, (b)

Push Notification, (c) Map Task

Reduce tasks are responsible for computing the metrics de-

scribed in Section 4.1 and store the results in MongoDB.

In the stream processing component, we implemented a

Storm topology (see Figure 2) that processes the real-time

sensor data. We exploit the parallelism offered by Storm by

having multiple instances of our Analysis component, run-

ning in parallel, in order to decrease latency. The topology

pre-processes the incoming data and stores them in Mon-

goDB. Also the pre-processed data are sent to the compo-

nent that invokes the three different techniques. Again we

partition the data based on the offline mapping, to guaran-

tee that all neighboring data will be processed by the same

component’s instance. Detected events are forwarded to the

Crowdsourcing component that is responsible to inform the

users that will help us detect if the sensor is faulty.

4.3. Crowdsourcing System

Misco. Our Crowdsourcing system has been developed us-

ing the Misco framework (Dou et al., 2011; 2010; Kakan-

tousis et al., 2012), which is based on the MapReduce

paradigm and tailored for mobile devices to provide an ex-

tensible and efficient way to develop distributed applica-

tions.

Our Crowdsourcing system is structured using (i) a Mas-

ter Server that keeps track of the tasks tk submitted when

anomalies are detected from SCATS sensors, assigns them

to human workers wj and returns the responses to the sys-

tem, and (ii) the Workers who are the human contributors

that process the crowdsourcing tasks. Each Worker is re-

sponsible to process queries and return the results to the

server. These tasks are executed by workers through their

personal smartphone devices or tablets.

Task assignment. Suppose that we need to exploit Crowd-

sourcing to determine the source of an event using a task

tj . We describe the step-by-step sequence followed so as to

process the task and return the results. In the implementa-

tion described below we considered Android-based devices
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and thus we have utilized the Android SDK10.

For every task tj , the Master Server spans the task to a set

of map tasks that need to be forwarded to the human work-

ers wk. Since these tasks are geo-located only the workers

that reside close to the specific selection need to be selected

by the Master Server to provide information. However, in

order to avoid tracking the users we follow a different pol-

icy. We forward the task to all the workers and the tasks are

locally filtered at the mobile devices if their location is far

from the location of the task tj .

We use Push Notifications services to initiate the communi-

cation with the human workers, to be able to send the Map

task to the users without being restricted by their connec-

tion (WiFi, 3G, etc). Such services exist in all major mobile

operator systems and allow users to register for message

delivery when they are online through a connection server.

In order to be able to receive map tasks, each user first

needs to login to our system so that the Master server will

be aware of the user. At the same time the user also regis-

ters in the push notification service to retrieve its unique id.

During normal operation the Crowdsourcing applications

runs in the background (Figure 3a).

When the Master Server retrieves a new task tj from the

requester, it delivers a push notification to the user devices

with the task, through the Push Notification service. Once

the device receives the notification it examines whether the

user current location is close to the location of the task so

as to alert the user (Figure 3b). Next, if the user selects the

notification on his mobile device the Crowdsourcing appli-

cation is triggered and the task will be displayed in the user

screen to process the task (Figure 3c).

Finally, the responses for each map task are forwarded to

the Master Server that initiates the reduce phase to aggre-

gate the answers. The reduce phase is performed through

Majority Voting. Hence the Master Server identifies the re-

sponse responsejk for task tk with the maximum amount

of answers from all users wj and forwards the response that

represents the cause of the event to the system.

Crowd Feedback. The response retrieved by the crowd-

sourcing component enables the system to determine

whether the irregular readings derive from an unexpected

event (e.g., roadworks) or if the sensor is indeed faulty

when most of the workers answer “None of the above”.

5. Evaluation

We have evaluated our proposals on our local cluster con-

sisting of 4 VMs. Each VM had two CPU processors at-

tached and 3, 096 MB of RAM. All VMs were connected

10Android platform: http://www.android.com/

Parameter Value

job periodicity 24 hours

stream threshold 10 minutes

time window 1 hour

Table 1. Basic Configuration Parameters

to the same LAN and their clocks were synchronized us-

ing the NTP protocol. The frameworks we used were the

following: Storm 0.8.2, Esper 5.1 and MongoDB 2.6.5.

In Table 1, you can see the values of the basic configuration

parameters described in Section 4.2. For the experiments,

we used SCATS data from the period of April and May

of 2014. The distance threshold used for the neighbour-

ing sensors computation was set to 250 meters. Data from

April were used in order to calculate the historical corre-

lations, cross-correlations as well as the ARIMA models.

On the other hand, data from May were used for different

experimental runs (see below).

For the Pearson Correlation method we have stored the his-

torical correlations of the neighbour-pairs in the MongoDB

component. 7116 neighbour pairs were identified under the

distance threshold from a set of 900 SCATS sensors. The

correlation value ranged from almost perfect correlation,

for sensors of the same junction under different lane, to no

correlation at all for more distant sensors. Negative corre-

lation values between nearby sensors were also observed.

This could be explained by the opposite direction of the

lane the sensors are responsible for. In Figure 4, the cor-

relation matrix for a set of 30 nearby sensors is presented.

As expected, clusters are formed by adjacent sensors that

are highly correlated. Thus, it is reasonable to argue that

when the expected correlation is not observed there might

be a problem with the sensor. For the Cross-Correlation

method apart from storing the correlation value itself we

have also stored the time lag that maximizes the pair-wise

sensor correlation. The time lag range was set to a maxi-

mum of 10 minutes since the sensors are quite close to each

other and larger time lags are unlikely to significantly favor

the correlation value. In addition, the larger the time lag

range is, the more computationally demanding the method

will be. As it was expected, in most cases the highest cross-

correlation was observed with no time lag at all, since most

sensor pairs are responsible for different lanes of the same

highway junction. However, for more distant sensor-pairs

responsible for different highway junctions, small time lags

gave a boost on their correlation value. One way to under-

stand this is because vehicles require a short time to reach

consecutive junctions. In addition, this behaviour could be

also explained by the operation of traffic lights that trans-

fer the traffic from junction to junction on fixed time inter-

vals. Figure 5 depicts the distribution of the optimal time
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Figure 8. Venn diagram for the three proposed

methods

lag value over a sample of neighbor pairs.

In terms of the multivariate ARIMA method, a different

model was fitted to each sensor using as features all the

neighbor sensors. The performance of all the models was

aggregated and measured in terms of Mean Absolute Error

(MAE), Root Mean Squared Error(RMSE) and Correlation

Coefficient (CC) using a validation dataset. The results fol-

low on Table 2 with a low MAE value of 16.18 indicating

a decent fit.

Figure 6 shows the forecasting performance of the ARIMA

model on the validation dataset and Figure 7 gives an ex-

ample on forecasting two different sensors. Sensors such

as the one presented in Figure 7 (left) will be considered as

non-faulty since the deviation between the observed mea-

surements and the expectation is not significant. On the

other hand, sensors such as the one in Figure 7 (right),

given that it reports maximum values for a long period of

time, it is likely that it is faulty. These sensors are flagged

by our system for further manual evaluation or inspection

from the traffic operators.

The three methods were compared in terms of the number

of faulty sensors they identify. In addition, since the Corre-

lation and the ARIMA approaches focus at a very different

aspect of the same problem we measured the overlap be-

tween their results. Figure 8 displays the Venn diagram of

the results obtained over the period of one day during May

of 2014. As it was expected, the results of Pearson Corre-

lation and Cross-Correlation are highly overlapping since

for many sensors the optimal time lag is zero. On the other

hand, the ARIMA method identified different sensors as er-

roneous suggesting that the methods are complementary to

each other. Interestingly enough, 13 sensors were identified

as erroneous from all methods indicating that sensors op-

erate in an unexpected way in many settings and are more

likely to be faulty.
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Metric Result

CC 0.68

MAE 16.8

RMSE 23.18

Table 2. The measurements that indicate the performance of the

multivariate ARIMA model

6. Related Work

Traffic monitoring has been a field of great interest in the

scientific community (Biem et al., 2010), (Patroumpas &

Sellis, 2012). These works detect unusual events based on

pre-defined rules so any updates to the traffic conditions

overtime is not taken into account. In contrast, our pro-

posal exploits historical data for updating the expected sen-

sor correlations and detects events only when the real-time

conditions deviate significantly from the expected. Authors

in (Ma et al., 2013) propose a novel city transportation ap-

plication that enables sharing of taxi rides in a large city.

Their goal was to develop an application that is beneficial

for both the citizens and the taxi drivers.

There has been significant work in traffic monitoring in the

use-case of Dublin. (Artikis et al., 2014) proposed a traffic

management system, based on heterogeneous data, which

used Crowdsourcing in order to resolve conflicting sensors

reports. (Zygouras et al., 2015) focused on monitoring the

traffic conditions of the city by considering the metrics re-

ported from sensors mounted on top of public buses. While

(Liebig et al., 2014a) and (Liebig et al., 2014b) perform in-

dividual trip planning that considers future traffic hazards

in routing. Furthermore, their approach estimates the ex-

pected traffic flow in areas with low sensor coverage.

Anomaly detection methods have been widely applied for

mining data streams including techniques such as data

clustering (Guo et al., 2009), principal component analy-

sis (PCA) (Lakhina et al., 2004), wavelet transform (No-

vakov et al., 2013) and many others. Some detection meth-

ods follow a time series analysis perspective and focus on

forecasting methods such as ARIMA (Zare Moayedi &

Masnadi-Shirazi, 2008; Fujimaki et al.). ARIMA mod-

els are a wide family of analysis and forecasting models

that are used widely in forecasting urban traffic time series

data (Lee & Fambro, 1999; Williams et al., 1998). This

makes ARIMA models suitable for our scenario. (Nien-

nattrakul et al., 2010), used distance-based outlier detec-

tion techniques, reducing the size of the original database,

in order to efficiently identify outliers in massive stream-

ing datasets. (Schettlinger et al., 2010) proposed an on-

line time series filter, using repeated median regression,

which is able to smooth the data and keep intact the sig-

nal’s trend. (Branch et al., 2013) developed a distributed

and in-network model in order to detect outliers on net-

work exchanges among neighboring nodes. (Fried et al.,

2015) proposed a Bayesian approach to model time series

of counts, using Metropolis-Hastings algorithm in order to

estimated the parameters of the model.

7. Conclusions

In this paper we presented an efficient approach for re-

solving whether irregular sensor measurements are due to

faulty sensors or unexpected traffic. Our approach exploits

sensors’ past measurements and the crowd’s wisdom for

decision making. We implemented our proposals using the

Lambda-Architecture for processing real-time and histori-

cal data, and an Android application for extracting answers

from the human crowd. We applied three different outlier

detection techniques that identified complementary set of

faulty sensors. Finally, our detailed experimental evalua-

tion indicates that our approach can effectively resolve the

source of irregular measurements in real-time.
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