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ABSTRACT

Similarity measures are essential to solve many pattern recog-
nition problems such as classification, clustering, and re-
trieval problems. Various similarity measures are catego-
rized in both syntactic and semantic relationships. In this
paper we present a novel similarity, Unilateral Jaccard Sim-
ilarity Coefficient (uJaccard), which doesn’t only take into
consideration the space among two points but also the se-
mantics among them.

Categories and Subject Descriptors

E.1 [Data Structures|: Graphs and networks; G.2.2 [Graph
Theory]|: Graph algorithms

General Terms
Theory

Keywords

Jaccard, distance, similarity

1. INTRODUCTION

Since Euclid to today many similarity measures have been
developed to consider many scenarios in different areas, par-
ticularly in the last century. Similarity measures are used
to compare different kind of data which is fundamentally
important for pattern classification, clustering, and infor-
mation retrieval problems [3]. Similarity relations have gen-
erally been dominated by geometric models in which objects
are represented by points in a Euclidean space [12]. Simi-
larity is defined as “Having the same or nearly the same
characteristics” [4], while the metric distance is defined as
“The property created by the space between two objects or
points”. All metric distance functions must satisfy three ba-
sic axioms: minimality and equal self-similarity, symmetry,
and triangle inequality.

d(i,i) = d(j,j) < d(i, j) (1)
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d(i, j) = d(j,1) (2)

d(i,7) +d(j,k) > d(i, k) (3)

Here for objects i, j and k, where d() is the distance between
objects i and j. Bridge [1] argues that there exists empiri-
cal evidence of violations against each of the three axioms.
Yet, there also exists geometric models of similarity which
take asymmetry into account [10]. Nosofsky points out that
a number of well-known models for asymmetric proximity
data are closely related to the additive similarity and bias
model [5]. Tversky [13] has proposed a different model in or-
der to overcome the metric assumption of geometric models.
One of the strengths of contrast models is its capability to
explain asymmetric similarity judgments. Tversky’s asym-
metry may often be characterized in terms of stimulus bias
and determined by the relative prominence of the stimuli.

sim(a,b) = AN B
’ |ANB|+ alA— B|+ 8|B - A|’ (4)

a,f=>0

Here A and B represent feature sets for the objects a and b
respectively; the term in the numerator is a function of the
set of shared features, a measure of similarity, and the last
two terms in the denominator measure dissimilarity: « and
B are real-number weights; when « |= (8. Jimenez et al. 6],
Weeds and Weir [14] and Lee [7] also propose an asymmet-
ric similarity measure based on Tversky’s work. However
all proposals include a stimulus bias, asymmetric similar-
ity judgments, which Tversky refers to as human judgment.
Today, similarity measure is deeply embedded into many of
the algorithms used for graph classification, clustering and
other tasks. Those techniques are leaving aside the seman-
tic of each vertex and it’s relation among other vertices and
edges.

In a direct graph, the similarity from U to Z is not the same
as the distance from Z to U, this due to the intrinsic features
of a direct graph. The similarities are different because the
channels are dissimilar. According to Shannon’s informa-
tion theory we could argue that each vertex is a source of
energy with an average entropy which is shared among it’s
channels, and while that information flow among the ver-
tex’s channels, we need to be consider it in the similarity. A
similarity does not fit all tasks or cases.

In Natural Langue Processing, where the similarity between
two words is not symmetric sim(word a,word b) != sim(word
b,word a). WordNet [4] presents 28 different types of rela-
tions; those relations have direction but are not symmetrical,
they are not even synonyms because each synonym word has
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Figure 1: Structural Equivalence.

a particular semantic, meaning and usage, but are similar.
Hence if two words have symmetric distance or similarity,
those two words are the same. Paradigmatic is an intrinsic
feature in language, It lets the utterer exchange words with
other words, words with similar semantics [11]. In this paper
we focus on paradigmatic analysis to support our unilateral
Jaccard Similarity coefficient (uJaccard).

The rest of the paper is organized as follows. In section 2 we
will show the unilateral Jaccard Similarity coefficient (uJac-
card). In section 3 we will consider some cases; finally in
section 4 we conclude this work.

2. PARADIGMATIC SIMILARITY DEFINI-
TION

2.1 Basics Of Paradigmatic Structures

Paradigmatic analysis is a process that identifies entities
which are not related directly but are related by their prop-
erties, relatedness among other entities and interchangeabil-
ity |2]. In language the reason why we tend to use mor-
phologically unrelated forms in comparative oppositions is
to emphasize the semantics, this is done by substitution and
transposition of words with a similar signifier. Similarity is
not defined by a syntactic set of rules but rather by the use
of the language. In some cases this use is not grammatically
or syntactically correct but it is commonly used. We defined
the signifier as being the degree of relation among entities
of the same group, where not all members of the group have
the same degree of relatedness. This is due to the fact that
a member of a group might belong to more than one group.

2.2 Extended Paradigmatic

Two vertices in a graph are structurally equivalent if they
share many of the same network neighbours. Figure 1 de-
picts a structural equivalence between two vertices y and x
who have the same neighbours. Regular equivalence is more
subtle, two regularly equivalent vertices do not necessarily
share the same neighbours, but they do have neighbours
who are themselves similar [8] [15]. We will use structural
equivalence as the bases of uJaccard.

2.2.1 Unilateral Jaccard Similarity

To calculate a paradigmatic similarity we start with a
question, is the similarity coefficient from vertex Va to Vc
the same to the similarity coefficient from vertex Vc to Va
?. If we argue that both similarity coefficients are the same,
we are arguing that the edges from the vertices Va and Vc
are the same, and it is clear that that is not usually the case.
Thus both vertices have different sets of edges. One problem
with Tversky |13| similarity is the estimation for o and
which are stimulus bias, generally a human factor. Similarly,
other similarities which are based on Tversky idea, have the

same problem. On the other hand we propose a measure
that does not include this bias. We propose a modified ver-
sion of Jaccard Similarity coefficient (1), unilateral Jaccard
Similarity coefficient (uJaccard) (2)(3), used to identify the
similarity coefficient of Va to Vc With respect to vertex Va,
and to also identify the similarity coefficient of Vc to Va
With respect to vertex Vec.

Jaccard(Va, Ve) = }ZGZ: “
afc

uJaccard(Va, Ve) = m Y
cNa

uJaccard(Ve, V) = m v

Here Va and Vc are the number of edges in vertex a and
¢, likewise the edges(Vc) are the number of edges in ver-
tex c. if uJaccard is close to 0, it means that they are not
similar at all. The objective of using uJaccard is to iden-
tify how similar a vertex is to other vertices in relation to
itself. uJaccard could be calculated among two connected
vertices, uJaccard could also be calculated among vertices
that are not connected directly, but which are connected
by in-between vertices. The number of in-between vertices
could be from 1 to n, we do not recommend a deep compar-
ison since the semantics of the vertex loosest its meaning.
Hence max(n)=3, it is suggested for NLP. For the calcula-
tions we do not consider the number of in-between vertices
since we focus on the information flow and not the informa-
tion transformation carried out on the intermediate vertices.

3. EXPERIMENTAL EVALUATION

Figure 2: Toy graph.

3.1 Toy Testing

Using similarity uJaccard (6),(7) we can build a paradig-
matic approach to group vertices. Figure 2 shows a toy
graph with 12 vertices and 16 edges, following the paradig-
matic analysis, we can determine that vertex 12 and 7 belong
to group P because they have the same number of edges to
a same set of vertices. Vertex 1 also belongs to group P
because vertex 1 has 3 of the 5 edges, the same as vertex 7,
the degree of membership of vertex 1 is lower than vertices 7
and 12 because vertex 1 has other edges that are not shared
by vertices 7 or 12. In the same manner we can determine
that vertex 8, 9, 10 and 11 belong to group Q because they
have an equal number of edges to the same set of vertices.
Similarly vertices 2, 3 and 4 belong to group R, and vertices
5 and 6 belong to group O. In this example we can eas-
ily identify the paradigmatic approach, where two or more



vertices belong to the same group if they have the same or
similar neighbours, but the neighbours in turn belong to an-
other group.

Following the uJaccard similarity and the paradigmatic

Table 1: uJaccard calculation from figure [3]
uJaccard (V1,V7) = 3/5 = 0.600
uJaccard (V7,V1) = 3/7 = 0.428
uJaccard (V7,V12) = 4/7 = 0.571
uJaccard (V12,V7) = 4/4 = 1.000
Jaccard (V1,V7) = 3/9 = 0.333
Jaccard (V7,V1) = 3/9 = 0.333
Jaccard (V7,V12) = 4/7 = 0.571
Jaccard (V12,V7) = 4/7 = 0.571

approach, the results of the graph in figure [3| are shown in
table [3:1] we notice that uJaccard similarity provides bet-
ter information of similarity than Jaccard, this is because
uJaccard considers the notion of unilateral similarity. Table
3.1 shows three toy graphs, in which we present a compar-
ison between Jaccard and uJaccard. As show in table 3.1
uJaccard provides a unilateral similarity improving the sym-
metric similarity Jaccard.

Table shows three toy graphs, in which we present a

Table 2: Test uJaccard in toy graphs
uJaccard

sim(2,5)=4/4
sim(5,2)=4/6

Jaccard
sim(2,5)=4/6
sim(5,2)=4/6

uJaccard
sim(7,5)=1/3
sim(5,7)=1/1

Jaccard
sim(7,5)=1/3
sim(5,7)=1/3

uJaccard
sim(2,4)=3/4
sim(4,2)=3/5

Jaccard
sim(2,4)=3/6
sim(4,2)=3/6

comparison among Jaccard and uJaccard. As show in table
uJaccard provide an unilateral similarity improving the
symmetric similarity Jaccard.

3.2 Cuta graph

In graph theory, a cut is a partition of the vertices of a
graph into two disjoint subsets. There are many techniques
and algorithms to cut a graph, but in some cases there are
graphs that are difficult to cut, due to their symmetric dis-
tribution of vertices.

It is shown in figure that node 1 might belong to clus-
ter {2,3,4} or cluster {5,6}; to resolve this problem we use
uJaccard similarity measure to find the similarity of node 1
to other nodes. Table [3| shows that similarities from node 1
to other nodes 1 level deep are the same, so we could not
allocate node 1 to a particular cluster. Table [3| also shows
that similarities from node 1 to other nodes 2 levels deep,
in which uJaccard(1,3) has a strong similarity over the rest.
We could conclude that node 1 belong to cluster {2,3,4}.

In figure also node 1 might belong to cluster {2,3,4} or

Figure 3: Toy graph.

Table 3: Cut a graph using uJaccard

1 level deep 2 levels deep
uJaccard(1,4) | 1/4 | uJaccard(1,2) | 1/4
uJaccard(1,2) | 1/4 | uJaccard(1,3) | 2/4
uJaccard(1,5) | 1/4 | uJaccard(1,4) | 1/4
uJaccard(1,6) | 1/4 | uJaccard(1,5) | 1/4
- - uJaccard(1,6) | 1/4

cluster {5,6,7} or cluster {8,9,10,11}; this is where uJaccard
comes in, being able to solve this problem. Table E| shows
result of similarities from node 1 to all other nodes on the
network in different levels deep. cluster {8,9,10,11} presents
the highest number of strong similarities, therefor we can
conclude that node 1 belongs to cluster {8,9,10,11}.

Figure 4: Toy graph.

3.3 Social Network

We tested uJaccard against two social network graphs; the
first is the coauthorship network of scientists [9] the second
is the network of Hollywood’s actor:

The first network is the coauthorship network of scientists
working on network theory and experiments, compiled by
M. Newman [9]. We want to find the top scientists that
Newman is similar to or that have paradigmatic similarity.
As shown in table 5 the 3 most of Newman’s paradigmatic
similar scientists are Callaway, Strogatz and Holme. On the

ftp://ftp.fu-

!The Internet Movie Database:
berlin.de/pub/misc/movies/database/



Table 4: Cut a graph using uJaccard
2 levels deep 3 levels deep
uJaccard(1,4) | 1/3 | uJaccard(1,4) | 1/3

uJaccard(1,2) | 1/3 | uJaccard(1,2) | 1/3
uJaccard(1,6) | 1/3 | uJaccard(1,6) | 1/3
uJaccard(1,7) | 1/3 | wJaccard(1,7) | 2/3

uJaccard(1,11) | 1/3 | uJaccard(1,11) | 2/3
uJaccard(1,10) | 1/3 | uJaccard(1,10) | 1/3

(1L, (L,

(1,6 (1,6

17 17
uJaccard(1,9) | 1/3 | uJaccard(1,9) | 2/3

(1,1 (1,1

(1,1 (1,1

Figure 5: Coauthorship network of scientists, se-
lected nodes belong to scientists Newman, Callaway,
Strogatz, Holme.

other hand the top 3 scientists that are similar to Newman
are Adler, Aberg and Aharony. uJaccard has been calcu-
lated in 2,3 and 4 levels deep away from Newman. Newman
is more similar to Strogatz but the most similar scientist to
new Newman is Adler and not Strogatz, even that Strogatz
most similarity is toward Newman.

For the second network, we created the second social net-
work of Hollywood’s actors, we based on The Internet Movie
Database (note). We download actors and actresses data,
which includes title of movies in which they worked, we also
download a list of top 1000 (nota) and top 250 (nota) actors
and actresses. The network is composed of nodes represent-
ing actors and actresses, and vertices are the movies in which
those actors worked together. A node is created for every
person, with their names as the key, when two people are
in the same movie; a vertex is created between their nodes.
The first network presents 1000 top actors and actresses who
also work in 41,719 movies with a total 113,478 edges. The
second network presents 250 actors and actresses who work
in 15,831 movies with a total of 14,096 edges. For this test
we remove duplicated edges.

e From a given actor A
e We search for actors that actor A is similar to

e From the actor A’s similar actor list we get the most
similar actor B

e We search for actors that actor B is similar to

e This is done to analyse if actor A and actor B are
reciprocally similar

e Then we look for actors that are most similar to actor

A

e We do this on the network top 250 actors and top 1000
actors.

Table 5: uJaccard calculation from in search
paradigmatic scientists to Newman

2 levels deep | 3levelsdeep [ 4 levels deep

Scientist Newman is similar to:

Callaway 0.15 | Strogatz 1.63 | Strogatz 8.25
Strogatz 0.15 | Holme 1.59 | Callaway | 7.85
Watts 0.15 | Kleinberg | 1.59 | Watts 7.81
Hopcroft 0.11 | Sole 1.59 | Kleinberg | 7.18
Scientists that are similar to Newman:
Adler 0.33 | Aberg 0.50 | Aberg 2.50
Aharony 0.33 | Adler 0.66 | Adler 14.0
Aleksiejuk 0.50 | Aharony | 0.66 | Aharony | 14.0
Ancelmeyers | 0.66 | Alava 0.50 | Alava 1.00
Araujo 0.33 | Albert 0.10 | Albert 0.50

The results of the search on the network of top 250 actors
and top 1000 actors, using uJaccard and the paradigmatic
approach are presented in tables[fland[7] In table[6]we focus
in Tom Cruise, we found that Tom Cruise is most similar
to Julia Roberts but Julia Roberts is most similar to John
Travolta, Tom Cruise is third in Julia Roberts’ similarity
list. clearly there is not a symmetric similarity among Julia
Roberts and Tom Cruise. Moreover Julia Roberts is not the
most similar toward Tom Cruise, the most similar towards
Tom Cruise is Heath Ledger. Hence this confirm that uJac-
card helps to identify similarities, particularly asymmetric
similarities. Table[f]also shows similar scenario among Tom
Cruise, Tom Hanks and Joan Allen in the network of top
250 actors and actresses, this confirm the usability of uJac-
card.

In Table m we use the network of top 250 actors and ac-

Table 6: uJaccard similarity among top 1000 and
top 250 actor and actresses, searching paradigmatic
similar actor

Top 1000 actors, cruise tom is similar to:
roberts julia

roberts julia 0.405 | travolta john 0.418
hanks tom 0.401 | hanks tom 0.412
jackson samuel | 0.399 | jackson samuel | 0.407
douglas michael | 0.397 | cruise tom 0.399
eastwood clint 0.393 | spacey kevin 0.399

Top 250 actors, cruise tom is similar to:

hanks tom
hanks tom 0.430 | douglas michael | 0.425
douglas michael | 0.420 | cruise tom 0.421
eastwood clint 0.420 | jackson samuel | 0.418
spacey kevin 0.413 | travolta john 0.414
jackson samuel | 0.410 | spacey kevin 0.411
Who is similar to cruise tom:

top 1000 actors top 250 actors
ledger heath 0.490 | allen joan 0.496
bacon kevin 0.488 | balk fairuza 0.495
crowe russell 0.482 | bello maria 0.488
gibson mel 0.482 | collins pauline 0.487
benigni roberto | 0.482 | aiello danny 0.487

tresses and we focus on Anthony Quinn and Jack Nicholson.
We start by searching for actors that Anthony Quinn is sim-



ilar to, then we search for actors that are most similar to An-
thony Quinn in 1 and 2 levels deep. We notice that Anthony
Quinn is most similar to Tom Hanks but most similar ac-
tor to Anthony Quinn is Antonio Banderas, while Anthony
Quinn is the 153th most similar for Tom Hanks. Antonio
Banderas is most similar to Samuel Jackson and not to An-
thony Quinn, while Anthony Quinn is the 53th most similar
for Antonio Banderas. Therefore we could conclude that
Anthony Quinn and Tom Hanks are not symmetric simi-
lar rather they are asymmetric similar. Table [7] also shows
similar scenario for Jack Nicholson.

Table 7: uJaccard similarity among top 250 actor
and actresses, searching paradigmatic actor, in 2 and
3 levels deep

Top 250 actors, are similar to:
quinn anthony nicholson jack

hanks tom 0.451 | hanks tom 0.436
jackson samuel 0.443 | eastwood clint 0.429
lemmon jack 0.443 | travolta john 0.417
cruise tom 0.435 | williams robin 0.417
de niro robert 0.435 | douglas michael 0.414

Who are similar to quinn anthony:
1 level deep 2 levels deep
banderas antonio | 0.366 | banderas antonio | 21.866

bardem javier 0.350 | benigni roberto 20.758
martin steve 0.333 | burns george 20.565
goodman john 0.320 | baldwin alec 20.413
allen woody 0.285 | mcqueen steve 20.244

Who are similar to nicholson jack:
1 level deep 2 levels deep
greene graham 0.484 | banderas antonio | 41.477

bronson charles 0.482 | bacon kevin 41.133
brody adrien 0.480 | baldwin alec 41.0862
bale christian 0.476 | bronson charles 40.982
baldwin alec 0.474 | benigni roberto 40.948

4. CONCLUSION

A key assumption of most models of similarity is that a
similarity relation is symmetric. The symmetry assumption
is not universal, and it is not essential to all applications
of similarity. The need for asymmetric similarity is impor-
tant and central in Information Retrieval and Graph Data
Networks. It can improve current methods and provide an
alternative point of view.

We present a novel asymmetric similarity, Unilateral Jaccard
Similarity (uJaccard), where the similarity among A and B
is not same to the similarity among B and C, uJaccard(A,B)
!= uJaccard(B,A); this is based on the idea of paradigmatic
association. In comparison to Tversky our approach
uJaccard does not need a stimulus bias, whereas in the case
of Tversky human judgement is needed.

We present a series of cases in which we confirmed its use-
fulness and we validated uJaccard. We could extend uJac-
card to include weights to improve the asymmetry, we could
also use uJaccard and the paradigmatic approach to clus-
ter Graph data Networks. These are tasks in which we are
working on.

In conclusion, the proposed uJaccard similarity proved to be
useful despite its simplicity and the few resources used.
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